Reputation: 2321
I have four functions symbolically computed with Sympy and then lambdified:
deriv_log_s_1 = sym.lambdify((z, m_1, m_2, s_1, s_2), deriv_log_sym_s_1, modules=['numpy', 'sympy'])
deriv_log_s_2 = sym.lambdify((z, m_1, m_2, s_1, s_2), deriv_log_sym_s_2, modules=['numpy', 'sympy'])
deriv_log_m_1 = sym.lambdify((z, m_1, m_2, s_1, s_2), deriv_log_sym_m_1, modules=['numpy', 'sympy'])
deriv_log_m_2 = sym.lambdify((z, m_1, m_2, s_1, s_2), deriv_log_sym_m_2, modules=['numpy', 'sympy'])
From these functions, I define a cost function to optimize:
def cost_function(x, *args):
m_1, m_2, s_1, s_2 = x
print(args[0])
T1 = np.sum([deriv_log_m_1(y, m_1, m_2, s_1, s_2) for y in args[0]])
T2 = np.sum([deriv_log_m_2(y, m_1, m_2, s_1, s_2) for y in args[0]])
T3 = np.sum([deriv_log_m_1(y, m_1, m_2, s_1, s_2) for y in args[0]])
T4 = np.sum([deriv_log_m_1(y, m_1, m_2, s_1, s_2) for y in args[0]])
return T1 + T2 + T3 + T4
My function cost_function
works as expected:
a = 48.7161
b = 16.3156
c = 17.0882
d = 7.0556
z = [0.5, 1, 2, 1.2, 3]
test = cost_function(np.array([a, b, c, d]).astype(np.float32), z)
However, when I try to optimize it:
from scipy.optimize import fmin_powell
res = fmin_powell(cost_function, x0=np.array([a, b, c, d], dtype=np.float32), args=(z, ))
It raises the following error:
AttributeError: 'Float' object has no attribute 'sqrt'
I do not understand why such an error appears as my cost_function
alone does not raise any error.
Upvotes: 4
Views: 365
Reputation: 2321
The solution was, and I do not know why, to cast inputs to numpy.float:
m_1 = np.float32(m_1)
m_2 = np.float32(m_2)
s_1 = np.float32(s_1)
s_2 = np.float32(s_2)
Upvotes: 2