Reputation: 8365
I need to add a dimension to a DataArray
, filling the values across the new dimension. Here's the original array.
a_size = 10
a_coords = np.linspace(0, 1, a_size)
b_size = 5
b_coords = np.linspace(0, 1, b_size)
# original 1-dimensional array
x = xr.DataArray(
np.random.random(a_size),
coords=[('a', a coords)])
I guess I could create an empty DataArray with the new dimension and copy the existing data in.
y = xr.DataArray(
np.empty((b_size, a_size),
coords=([('b', b_coords), ('a', a_coords)])
y[:] = x
A better idea might be to be to use concat
. It took me a while to figure out how to specify both the dims and the coords for the concat dimension, and none of these options seem great. Is there something I'm missing that can makes this version cleaner?
# specify the dimension name, then set the coordinates
y = xr.concat([x for _ in b_coords], 'b')
y['b'] = b_coords
# specify the coordinates, then rename the dimension
y = xr.concat([x for _ in b_coords], b_coords)
y.rename({'concat_dim': 'b'})
# use a DataArray as the concat dimension
y = xr.concat(
[x for _ in b_coords],
xr.DataArray(b_coords, name='b', dims=['b']))
Still, is there a better way to do this than either of the two above options?
Upvotes: 15
Views: 21638
Reputation: 2209
If DA
is your data array with length DimLen
, you can now use expand_dims
:
DA.expand_dims({'NewDim':DimLen})
Upvotes: 14
Reputation: 778
Using .assign_coords
method will do it. However you can't assign coordinates to a non-existant dimension, the way to do as a one liner is:
y = x.expand_dims({b_coords.name: b_size}).assign_coords({b_coords.name: b_coords})
Upvotes: 4
Reputation: 308
With reference to the syntax of the question:
y = x.expand_dims({"b": b_coords})
Upvotes: 1
Reputation: 41
Because of the way that math is applied over new dimensions I like to multiply in order to add new dimensions.
identityb = xr.DataArray(np.ones_like(b_coords), coords=[('b', b_coords)])
y = x * identityb
Upvotes: 4