Reputation: 14888
Given an arbitrary number, how can I process each digit of the number individually?
Edit
I've added a basic example of the kind of thing Foo
might do.
For example, in C# I might do something like this:
static void Main(string[] args)
{
int number = 1234567890;
string numberAsString = number.ToString();
foreach(char x in numberAsString)
{
string y = x.ToString();
int z = int.Parse(y);
Foo(z);
}
}
void Foo(int n)
{
Console.WriteLine(n*n);
}
Upvotes: 45
Views: 67946
Reputation: 111
I would like to improve upon the answer of Dave Clarke in this page. It boils down to using div
and mod
on a number and adding their results to a list, only this time it won't appear reversed, nor resort to ++
(which is slower concatenation).
toDigits :: Integer -> [Integer]
toDigits n
| n <= 0 = []
| otherwise = numToDigits (n `mod` 10) (n `div` 10) []
where
numToDigits a 0 l = (a:l)
numToDigits a b l = numToDigits (b `mod` 10) (b `div` 10) (a:l)
This program was a solution to a problem in the CIS 194 course at UPenn that is available right here. You divide the number to find its result as an integer and the remainder as another. You pass them to a function whose third argument is an empty list. The remainder will be added to the list in case the result of division is 0. The function will be called again in case it's another number. The remainders will add in order until the end.
Note: this is for numbers, which means that zeros to the left won't count, and it will allow you to have their digits for further manipulation.
Upvotes: 0
Reputation: 654
I've been following next steps(based on this comment):
toDigits :: Integer -> [Integer]
toDigits a = [(read([m])::Integer) | m<-show(a)]
main = print(toDigits(1234))
Upvotes: 2
Reputation: 3341
digits :: Integer -> [Int]
digits = map (read . (:[])) . show
or you can return it into []
:
digits :: Integer -> [Int]
digits = map (read . return) . show
or, with Data.Char.digitToInt:
digits :: Integer -> [Int]
digits = map digitToInt . show
the same as Daniel's really, but point free and uses Int, because a digit shouldn't really exceed maxBound :: Int
.
Upvotes: 29
Reputation: 11803
I was lazy to write my custom function so I googled it and tbh I was surprised that none of the answers on this website provided a really good solution – high performance and type safe. So here it is, maybe somebody would like to use it. Basically:
[]
right?)-XStrict
allows Haskell to fully do strictness analysis and optimize the inner loop.Enjoy:
{-# LANGUAGE Strict #-}
digits :: Integral a => a -> NonEmpty Word8
digits = go [] where
go s x = loop (head :| s) tail where
head = fromIntegral (x `mod` 10)
tail = x `div` 10
loop s@(r :| rs) = \case
0 -> s
x -> go (r : rs) x
Upvotes: 3
Reputation: 303
Applicative. Pointfree. Origami. Neat.
Enjoy:
import Data.List
import Data.Tuple
import Data.Bool
import Control.Applicative
digits = unfoldr $ liftA2 (bool Nothing) (Just . swap . (`divMod` 10)) (> 0)
Upvotes: 2
Reputation: 879
The accepted answer is correct except that it will output an empty list when input is 0, however I believe the output should be [0]
when input is zero.
And I don't think it deal with the case when the input is negative. Below is my implementation, which solves the above two problems.
toDigits :: Integer -> [Integer]
toDigits n
| n >=0 && n < 10 = [n]
| n >= 10 = toDigits (n`div`10) ++ [n`mod`10]
| otherwise = error "make sure your input is greater than 0"
Upvotes: 0
Reputation: 15
I tried to keep using tail recursion
toDigits :: Integer -> [Integer]
toDigits x = reverse $ toDigitsRev x
toDigitsRev :: Integer -> [Integer]
toDigitsRev x
| x <= 0 = []
| otherwise = x `rem` 10 : toDigitsRev (x `quot` 10)
Upvotes: -2
Reputation: 11
digits = reverse . unfoldr go
where go = uncurry (*>) . (&&&) (guard . (>0)) (Just . swap . (`quotRem` 10))
Upvotes: -2
Reputation: 322
Here's an improvement on an answer above. This avoids the extra 0 at the beginning ( Examples: [0,1,0] for 10, [0,1] for 1 ). Use pattern matching to handle cases where x < 10 differently:
toDigits :: Integer -> [Integer] -- 12 -> [1,2], 0 -> [0], 10 -> [1,0]
toDigits x
| x < 10 = [x]
| otherwise = toDigits (div x 10) ++ [mod x 10]
I would have put this in a reply to that answer, but I don't have the needed reputation points :(
Upvotes: 3
Reputation: 37969
Via list comprehension:
import Data.Char
digits :: Integer -> [Integer]
digits n = [toInteger (digitToInt x) | x <- show n]
output:
> digits 1234567890
[1,2,3,4,5,6,7,8,9,0]
Upvotes: 3
Reputation: 4741
The accepted answer is great but fails in cases of negative numbers since mod (-1) 10
evaluates to 9. If you would like this to handle negative numbers properly... which may not be the case the following code will allow for it.
digs :: Int -> [Int]
digs 0 = []
digs x
| x < 0 = digs ((-1) * x)
| x > 0 = digs (div x 10) ++ [mod x 10]
Upvotes: 1
Reputation: 11
For returning a list of [Integer]
import Data.Char
toDigits :: Integer -> [Integer]
toDigits n = map (\x -> toInteger (digitToInt x)) (show n)
Upvotes: 1
Reputation: 1367
Have you heard of div and mod?
You'll probably want to reverse the list of numbers if you want to treat the most significant digit first. Converting the number into a string is an impaired way of doing things.
135 `div` 10 = 13
135 `mod` 10 = 5
Generalize into a function:
digs :: Integral x => x -> [x]
digs 0 = []
digs x = digs (x `div` 10) ++ [x `mod` 10]
Or in reverse:
digs :: Integral x => x -> [x]
digs 0 = []
digs x = x `mod` 10 : digs (x `div` 10)
This treats 0
as having no digits. A simple wrapper function can deal with that special case if you want to.
Note that this solution does not work for negative numbers (the input x
must be integral, i.e. a whole number).
Upvotes: 103
Reputation: 16768
Textbook unfold
import qualified Data.List as L
digits = reverse . L.unfoldr (\x -> if x == 0 then Nothing else Just (mod x 10, div x 10))
Upvotes: 15
Reputation: 1663
Using the same technique used in your post, you can do:
digits :: Integer -> [Int]
digits n = map (\x -> read [x] :: Int) (show n)
See it in action:
Prelude> digits 123
[1,2,3]
Does that help?
Upvotes: 14
Reputation: 54574
You can use
digits = map (`mod` 10) . reverse . takeWhile (> 0) . iterate (`div` 10)
or for reverse order
rev_digits = map (`mod` 10) . takeWhile (> 0) . iterate (`div` 10)
The iterate part generates an infinite list dividing the argument in every step by 10, so 12345 becomes [12345,1234,123,12,1,0,0..]. The takeWhile part takes only the interesting non-null part of the list. Then we reverse (if we want to) and take the last digit of each number of the list.
I used point-free style here, so you can imagine an invisible argument n on both sides of the "equation". However, if you want to write it that way, you have to substitute the top level .
by $
:
digits n = map(`mod` 10) $ reverse $ takeWhile (> 0) $ iterate (`div`10) n
Upvotes: 12