Reputation: 31
import numpy as np
import xlrd
import xlwt
wb = xlrd.open_workbook('Scatter plot.xlsx')
workbook = xlwt.Workbook()
sheet = workbook.add_sheet("Sheet1")
sh1 = wb.sheet_by_name('T180')
sh2=wb.sheet_by_name("T181")
x= np.array([sh1.col_values(1, start_rowx=51, end_rowx=315)])
y= np.array([sh1.col_values(2, start_rowx=51, end_rowx=315)])
x1= np.array([sh2.col_values(1, start_rowx=50, end_rowx=298)])
y1= np.array([sh2.col_values(2, start_rowx=50, end_rowx=298)])
condition = [(x1<=1000) & (x1>=0) ]
condition1 = [(y1<=1000) & (y1>=0) ]
x_prime=x1[condition]-150
y_prime= y[condition1]+20
plt.plot(x,y, "ro", label="T180")
plt.plot(x_prime,y_prime,"gs")
plt.show()
I want to subtract 150 from the values less than 1000 of x1 array and finally I need all values (subtracted+remaining). But with this code I got only the values that are less than 1000. But I need both (less than 1000+ greater than 1000). But greater than 1000 values will be unchanged. How can I will do this. As you can see there 248 elements in x1 array so after subtraction I will need 248 element as x_prime. Same as for y. Thanks in advance for your kind co-operation.
Upvotes: 1
Views: 257
Reputation: 210832
Here is a Pandas solution:
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
matplotlib.style.use('ggplot')
fn = r'/path/to/ExcelFile.xlsx'
sheetname = 'T181'
df = pd.read_excel(fn, sheetname=sheetname, skiprows=47, parse_cols='B:C').dropna(how='any')
# customize X-values
df.ix[df.eval('0 <= GrvX <= 1000'), 'GrvX'] -= 150
df.ix[df.eval('2500 < GrvX <= 3000'), 'GrvX'] += 50
df.ix[df.eval('3000 < GrvX'), 'GrvX'] += 30
# customize Y-values
df.ix[df.eval('0 <= GrvY <= 1000'), 'GrvX'] += 20
df.plot.scatter(x='GrvX', y='GrvY', marker='s', s=30, label=sheetname, figsize=(14,12))
plt.show()
Upvotes: 1
Reputation: 12599
import numpy as np
#random initialization
x1=np.random.randint(1,high=3000, size=10)
x_prime=x1.tolist()
for i in range(len(x_prime)):
if(x_prime[i]<=1000 and x_prime[i]>=0):
x_prime[i]=x_prime[i]-150
x_prime=np.asarray(x_prime)
Answer:
x1
Out[151]: array([2285, 2243, 1716, 632, 2489, 2837, 2324, 2154, 562, 2508])
x_prime
Out[152]: array([2285, 2243, 1716, 482, 2489, 2837, 2324, 2154, 412, 2508])
Upvotes: 0
Reputation: 94
You can use numpy.place
to modify arrays where a logic expression holds. For complex logic expressions on the array there are the logic functions that combines boolean arrays.
E.g.:
A = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
np.place(A, np.logical_and(A > 1, A <= 8), A-10)
will subtract 10
from every element of A
that is > 1
and <= 8
. After this A
will be
array([ 1, -9, -8, -7, -6, -5, -4, -3, 9, 10])
Upvotes: 1