Reputation: 105
here I go with another question
I have a large dataframe about 20 columns by 400.000 rows. In this dataset I can not have string since the software that will process the data only accepts numeric and nulls.
So they way I am thinking it might work is following. 1. go thru each column 2. Get List of unique strings 3. Replace each string with a value from 0 to X 4. repeat the process for the next column 5. Repeat for the next dataframe
This is how the dataframe looks like
DATE TIME FNRHP306H FNRHP306HC FNRHP306_2MEC_MAX
7-Feb-15 0:00:00 NORMAL NORMAL 1050
7-Feb-15 0:01:00 NORMAL NORMAL 1050
7-Feb-15 0:02:00 NORMAL HIGH 1050
7-Feb-15 0:03:00 HIGH NORMAL 1050
7-Feb-15 0:04:00 LOW NORMAL 1050
7-Feb-15 0:05:00 NORMAL LOW 1050
This is the result expected
DATE TIME FNRHP306H FNRHP306HC FNRHP306_2MEC_MAX
7-Feb-15 0:00:00 0 0 1050
7-Feb-15 0:01:00 0 0 1050
7-Feb-15 0:02:00 0 1 1050
7-Feb-15 0:03:00 1 0 1050
7-Feb-15 0:04:00 2 0 1050
7-Feb-15 0:05:00 0 2 1050
I am using python 3.5 and the latest version of Pandas
Thanks in advance
JV
Upvotes: 1
Views: 1381
Reputation: 210872
Solution:
# try to convert all columns to numbers...
df = df.apply(lambda x: pd.to_numeric(x, errors='ignore'))
cols = df.filter(like='FNR').select_dtypes(include=['object']).columns
st = df[cols].stack().to_frame('name')
st['cat'] = pd.factorize(st.name)[0]
df[cols] = st['cat'].unstack()
del st
Demo:
In [233]: df
Out[233]:
DATE TIME FNRHP306H FNRHP306HC FNRHP306_2MEC_MAX
0 7-Feb-15 0:00:00 NORMAL NORMAL 1050
1 7-Feb-15 0:01:00 NORMAL NORMAL 1050
2 7-Feb-15 0:02:00 NORMAL HIGH 1050
3 7-Feb-15 0:03:00 HIGH NORMAL 1050
4 7-Feb-15 0:04:00 LOW NORMAL 1050
5 7-Feb-15 0:05:00 NORMAL LOW 1050
first we stack all object
(string) columns:
In [235]: cols = df.filter(like='FNR').select_dtypes(include=['object']).columns
In [236]: st = df[cols].stack().to_frame('name')
now we can factorize stacked column:
In [238]: st['cat'] = pd.factorize(st.name)[0]
In [239]: st
Out[239]:
name cat
0 FNRHP306H NORMAL 0
FNRHP306HC NORMAL 0
1 FNRHP306H NORMAL 0
FNRHP306HC NORMAL 0
2 FNRHP306H NORMAL 0
FNRHP306HC HIGH 1
3 FNRHP306H HIGH 1
FNRHP306HC NORMAL 0
4 FNRHP306H LOW 2
FNRHP306HC NORMAL 0
5 FNRHP306H NORMAL 0
FNRHP306HC LOW 2
assign unstacked result back to original DF (to object
columns):
In [241]: df[cols] = st['cat'].unstack()
In [242]: df
Out[242]:
DATE TIME FNRHP306H FNRHP306HC FNRHP306_2MEC_MAX
0 7-Feb-15 0:00:00 0 0 1050
1 7-Feb-15 0:01:00 0 0 1050
2 7-Feb-15 0:02:00 0 1 1050
3 7-Feb-15 0:03:00 1 0 1050
4 7-Feb-15 0:04:00 2 0 1050
5 7-Feb-15 0:05:00 0 2 1050
Explanation:
In [248]: df.filter(like='FNR')
Out[248]:
FNRHP306H FNRHP306HC FNRHP306_2MEC_MAX
0 NORMAL NORMAL 1050
1 NORMAL NORMAL 1050
2 NORMAL HIGH 1050
3 HIGH NORMAL 1050
4 LOW NORMAL 1050
5 NORMAL LOW 1050
In [249]: df.filter(like='FNR').select_dtypes(include=['object'])
Out[249]:
FNRHP306H FNRHP306HC
0 NORMAL NORMAL
1 NORMAL NORMAL
2 NORMAL HIGH
3 HIGH NORMAL
4 LOW NORMAL
5 NORMAL LOW
Upvotes: 1