Reputation: 6856
I am trying to prove some simple things with idris but I am failing miserably. Here is my code
module MyReverse
%hide reverse
%default total
reverse : List a -> List a
reverse [] = []
reverse (x :: xs) = reverse xs ++ [x]
listEmptyAppend : (l : List a) -> [] ++ l = l
listEmptyAppend [] = Refl
listEmptyAppend (x :: xs) = Refl
listAppendEmpty : (l : List a) -> l ++ [] = l
listAppendEmpty [] = Refl
listAppendEmpty (x :: xs) = rewrite listAppendEmpty xs in Refl
list_append_eq : (l, l1, l2 : List a) -> l ++ l1 = l ++ l2 -> l1 = l2
list_append_eq l [] [] prf = Refl
list_append_eq l [] (x :: xs) prf = ?list_append_eq_rhs_1
list_append_eq l (x :: xs) [] prf = ?list_append_eq_rhs_2
list_append_eq l (x :: xs) (y :: ys) prf = ?list_append_eq_rhs_3
The goal for ?list_append_eq_rhs_1
is (after a couple of intro'
s)
---------- Assumptions: ----------
a : Type
l : List a
x : a
xs : List a
prf : l ++ [] = l ++ x :: xs
---------- Goal: ----------
{hole0} : [] = x :: xs
What I want to do is rewrite prf
using the trivial theorems I have proved until it is exactly the goal but I don't know how to do that in idris.
Upvotes: 0
Views: 348
Reputation: 15404
First of all, we need the fact that ::
is injective:
consInjective : {x : a} -> {l1, l2 : List a} -> x :: l1 = x :: l2 -> l1 = l2
consInjective Refl = Refl
Then we can use the above fact to prove list_append_eq
by induction on l
:
list_append_eq : (l, l1, l2 : List a) -> l ++ l1 = l ++ l2 -> l1 = l2
list_append_eq [] _ _ prf = prf
list_append_eq (x :: xs) l1 l2 prf =
list_append_eq xs l1 l2 (consInjective prf)
consInjective
by using the standard cong
(congruence) lemma
Idris> :t cong
cong : (a = b) -> f a = f b
and the drop
function:
list_append_eq : (l, l1, l2 : List a) -> l ++ l1 = l ++ l2 -> l1 = l2
list_append_eq [] _ _ prf = prf
list_append_eq (x :: xs) l1 l2 prf =
list_append_eq xs l1 l2 (cong {f = drop 1} prf)
Upvotes: 4