Reputation: 429
I have a specific analytical gradient I am using to calculate my cost f(x,y), and gradients dx and dy. It runs, but I can't tell if my gradient descent is broken. Should I plot my partial derivatives x and y?
import math
gamma = 0.00001 # learning rate
iterations = 10000 #steps
theta = np.array([0,5]) #starting value
thetas = []
costs = []
# calculate cost of any point
def cost(theta):
x = theta[0]
y = theta[1]
return 100*x*math.exp(-0.5*x*x+0.5*x-0.5*y*y-y+math.pi)
def gradient(theta):
x = theta[0]
y = theta[1]
dx = 100*math.exp(-0.5*x*x+0.5*x-0.0035*y*y-y+math.pi)*(1+x*(-x + 0.5))
dy = 100*x*math.exp(-0.5*x*x+0.5*x-0.05*y*y-y+math.pi)*(-y-1)
gradients = np.array([dx,dy])
return gradients
#for 2 features
for step in range(iterations):
theta = theta - gamma*gradient(theta)
value = cost(theta)
thetas.append(theta)
costs.append(value)
thetas = np.array(thetas)
X = thetas[:,0]
Y = thetas[:,1]
Z = np.array(costs)
iterations = [num for num in range(iterations)]
plt.plot(Z)
plt.xlabel("num. iteration")
plt.ylabel("cost")
Upvotes: 0
Views: 142
Reputation: 46
I strongly recommend you check whether or not your analytic gradient is working correcly by first evaluating it against a numerical gradient. I.e make sure that your f'(x) = (f(x+h) - f(x)) / h for some small h.
After that, make sure your updates are actually in the right direction by picking a point where you know x or y should decrease and then checking the sign of your gradient function output.
Of course make sure your goal is actually minimization vs maximization.
Upvotes: 2