ARJ
ARJ

Reputation: 2080

Mapping multiple dataframe based on the matching columns

I have 25 data frames which I need to merge and find recurrently occurring rows from all 25 data frames, For example, my data frame looks like following,

df1
chr start   end     name
1   12334   12334   AAA
1   2342    2342    SAP
2   3456    3456    SOS
3   4537    4537    ABR
df2
chr start   end     name
1   12334   12334   DSF
1   3421    3421    KSF
2   7689    7689    LUF
df3 
chr start   end     name
1   12334   12334   DSF
1   3421    3421    KSF
2   4537    4537    LUF
3   8976    8976    BAR
4   6789    6789    AIN

And In the end, I am aiming to have an output data frame like following,

chr start   end     name    Sample
1   12334   12334   AAA df1
1   12334   12334   AAA df2
1   12334   12334   AAA df3

I can get there with the following solution, By dictionary which adds all these three data frames into one bigger data frame dfs

dfs = {'df1': df1, 'df2': df2}

Then further,

common_tups = set.intersection(*[set(df[['chr', 'start', 'end']].drop_duplicates().apply(tuple, axis=1).values) for df in dfs.values()])
pd.concat([df[df[['chr', 'start', 'end']].apply(tuple, axis=1).isin(common_tups)].assign(Sample=name) for (name, df) in dfs.items()])

This gives out the resulting data frame with matching rows from all three data frames, but I have 25 data frames which I am calling as list from the directory as following,

path         = 'Fltered_vcfs/' 
files        = os.listdir(path)
results      = [os.path.join(path,i) for i in files if i.startswith('vcf_filtered')]

And so how can I show the list 'results' in the dictionary and proceed further to get the desired output. Any help or suggestions are greatly appreciated.

Thank you

Upvotes: 1

Views: 224

Answers (1)

Ami Tavory
Ami Tavory

Reputation: 76346

Using the glob module, you can use

import os
from glob import glob

path = 'Fltered_vcfs' 
f_names = glob(os.path.join(path, 'vcf_filtered*.*')) 

Then, your dictionary can be created with dictionary comprehension using

import pandas as pd

 {os.path.splitext(os.path.split(f_name)[1])[0]: pd.read_csv(f_name,sep='\t') for f_name in f_names}

Upvotes: 1

Related Questions