Reputation: 26309
I need the indices (as numpy array) of the rows matching a given condition in a table (with billions of rows) and this is the line I currently use in my code, which works, but is quite ugly:
indices = np.array([row.nrow for row in the_table.where("foo == 42")])
It also takes half a minute, and I'm sure that the list creation is one of the reasons why.
I could not find an elegant solution yet and I'm still struggling with the pytables docs, so does anybody know any magical way to do this more beautifully and maybe also a bit faster? Maybe there is special query keyword I am missing, since I have the feeling that pytables should be able to return the matched rows indices as numpy array.
Upvotes: 2
Views: 1014
Reputation: 74
tables.Table.get_where_list() gives indices of the rows matching a given condition
Upvotes: 2
Reputation: 97331
I read the source of pytables, where()
is implemented in Cython, but it seems not fast enough. Here is a complex method that can speedup:
Create some data first:
from tables import *
import numpy as np
class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # 32-bit integer
grid_j = Int32Col() # 32-bit integer
pressure = Float32Col() # float (single-precision)
energy = Float64Col() # double (double-precision)
h5file = open_file("tutorial1.h5", mode = "w", title = "Test file")
group = h5file.create_group("/", 'detector', 'Detector information')
table = h5file.create_table(group, 'readout', Particle, "Readout example")
particle = table.row
for i in range(1001000):
particle['name'] = 'Particle: %6d' % (i)
particle['TDCcount'] = i % 256
particle['ADCcount'] = (i * 256) % (1 << 16)
particle['grid_i'] = i
particle['grid_j'] = 10 - i
particle['pressure'] = float(i*i)
particle['energy'] = float(particle['pressure'] ** 4)
particle['idnumber'] = i * (2 ** 34)
# Insert a new particle record
particle.append()
table.flush()
h5file.close()
Read the column in chunks and append the indices into a list and concatenate the list to array finally. You can change the chunk size according to your memory size:
h5file = open_file("tutorial1.h5")
table = h5file.get_node("/detector/readout")
size = 10000
col = "energy"
buf = np.zeros(batch, dtype=table.coldtypes[col])
res = []
for start in range(0, table.nrows, size):
length = min(size, table.nrows - start)
data = table.read(start, start + batch, field=col, out=buf[:length])
tmp = np.where(data > 10000)[0]
tmp += start
res.append(tmp)
res = np.concatenate(res)
Upvotes: 0