Reputation: 109
I am trying to use approx()
and dplyr
to interpolate values in an existing array. My initial code looks like this ...
p = c(1,1,1,2,2,2)
q = c(1,2,3,1,2,3)
r = c(1,2,3,4,5,6)
Inputs<- data.frame(p,q,r)
new.inputs= as.numeric(c(1.5,2.5))
library(dplyr)
Interpolated <- Inputs %>%
group_by(p) %>%
arrange(p, q) %>%
mutate(new.output=approx(x=q, y=r, xout=new.inputs)$y)
I expect to see 1.5, 2.5, 4.5, 5.5 but instead I get
Error: incompatible size (2), expecting 3 (the group size) or 1
Can anyone tell me where I am going wrong?
Upvotes: 1
Views: 1141
Reputation: 471
You can get the values you expect using dplyr
.
library(dplyr)
Inputs %>%
group_by(p) %>%
arrange(p, q, .by_group = TRUE) %>%
summarise(new.outputs = approx(x = q, y = r, xout = new.inputs)$y)
# p new.outputs
# <dbl> <dbl>
# 1 1.5
# 1 2.5
# 2 4.5
# 2 5.5
You can also get the values you expect using the ddply
function from plyr
.
library(plyr)
# Output as coordinates
ddply(Inputs, .(p), summarise, new.output = paste(approx(
x = q, y = r, xout = new.inputs
)$y, collapse = ","))
# p new.output
# 1 1.5,2.5
# 2 4.5,5.5
#######################################
# Output as flattened per group p
ddply(Inputs,
.(p),
summarise,
new.output = approx(x = q, y = r, xout = new.inputs)$y)
# p new.output
# 1 1.5
# 1 2.5
# 2 4.5
# 2 5.5
Upvotes: 1