Reputation: 5188
I'm building a convolutional neural network with Keras and would like to add a single node with the standard deviation of my data before the last fully connected layer.
Here's a minimum code to reproduce the error:
from keras.layers import merge, Input, Dense
from keras.layers import Convolution1D, Flatten
from keras import backend as K
input_img = Input(shape=(64, 4))
x = Convolution1D(48, 3, activation='relu', init='he_normal')(input_img)
x = Flatten()(x)
std = K.std(input_img, axis=1)
x = merge([x, std], mode='concat', concat_axis=1)
output = Dense(100, activation='softmax', init='he_normal')(x)
This results in the following TypeError
:
-----------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-117-c1289ebe610e> in <module>()
6 x = merge([x, std], mode='concat', concat_axis=1)
7
----> 8 output = Dense(100, activation='softmax', init='he_normal')(x)
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.pyc in __call__(self, x, mask)
486 '`layer.build(batch_input_shape)`')
487 if len(input_shapes) == 1:
--> 488 self.build(input_shapes[0])
489 else:
490 self.build(input_shapes)
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/layers/core.pyc in build(self, input_shape)
701
702 self.W = self.init((input_dim, self.output_dim),
--> 703 name='{}_W'.format(self.name))
704 if self.bias:
705 self.b = K.zeros((self.output_dim,),
/home/ubuntu/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/initializations.pyc in he_normal(shape, name, dim_ordering)
64 '''
65 fan_in, fan_out = get_fans(shape, dim_ordering=dim_ordering)
---> 66 s = np.sqrt(2. / fan_in)
67 return normal(shape, s, name=name)
68
TypeError: unsupported operand type(s) for /: 'float' and 'NoneType'
Any idea why?
Upvotes: 3
Views: 552
Reputation: 57639
std
is no Keras layer so it does not satisfy the layer input/output shape interface. The solution to this is to use a Lambda
layer wrapping K.std
:
from keras.layers import merge, Input, Dense, Lambda
from keras.layers import Convolution1D, Flatten
from keras import backend as K
input_img = Input(shape=(64, 4))
x = Convolution1D(48, 3, activation='relu', init='he_normal')(input_img)
x = Flatten()(x)
std = Lambda(lambda x: K.std(x, axis=1))(input_img)
x = merge([x, std], mode='concat', concat_axis=1)
output = Dense(100, activation='softmax', init='he_normal')(x)
Upvotes: 1