cahen
cahen

Reputation: 16706

Spark job became incompatible with Google Dataproc

I have this code that was working fine for months and stopped working about 2 months ago with Google Dataproc although I hadn't changed a single line.

I could reproduce the bug with just a few lines so I didn't have to post a huge block of code:

SparkConf sparkConf = new SparkConf().setAppName("test");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);

JavaRDD<String> rdd = jsc.parallelize(Arrays.asList("a", "b", "c"));
JavaPairRDD<String, String> pairs = rdd.flatMapToPair(value ->
        Arrays.asList(
                new Tuple2<>(value, value + "1"), 
                new Tuple2<>(value, value + "2")
        )
);
pairs.collect().forEach(System.out::println);

Then I get this obscure Exception:

WARN org.apache.spark.scheduler.TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, test-cluster-w-1.c.test-project.internal): java.lang.AbstractMethodError: uk.co.test.CalculateScore$$Lambda$10/1666820030.call(Ljava/lang/Object;)Ljava/util/Iterator;
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$3$1.apply(JavaRDDLike.scala:142)
        at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$3$1.apply(JavaRDDLike.scala:142)
        at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
        at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at scala.collection.AbstractIterator.to(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:893)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:893)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1897)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1897)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
        at org.apache.spark.scheduler.Task.run(Task.scala:85)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 7, test-cluster-w-0.c.test-project.internal): ExecutorLostFailure (executor 2 exited caused by one of the running tasks) Reason: Container marked as failed: container_1475077182957_0001_01_000005 on host: sun-recommendations-evaluation-w-0.c.test-project.internal. Exit status: 50. Diagnostics: Exception from container-launch.
Container id: container_1475077182957_0001_01_000005
Exit code: 50
Stack trace: ExitCodeException exitCode=50:
        at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
        at org.apache.hadoop.util.Shell.run(Shell.java:456)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
        at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
        at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)


Container exited with a non-zero exit code 50

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1450)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1438)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1437)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1437)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1659)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1618)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1607)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1884)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1897)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1911)
        at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:893)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
        at org.apache.spark.rdd.RDD.collect(RDD.scala:892)
        at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:360)
        at org.apache.spark.api.java.AbstractJavaRDDLike.collect(JavaRDDLike.scala:45)
        at uk.co.test.CalculateScore.main(CalculateScore.java:50)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:729)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

If I run it locally with:

sparkConf.setMaster("local[2]")

Then it works fine and outputs:

(a,a1)
(a,a2)
(b,b1)
(b,b2)
(c,c1)
(c,c2)

These are my Spark dependencies:

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-mllib_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.10</artifactId>
        <version>1.6.0</version>
    </dependency>

Any help is appreciated.

Upvotes: 1

Views: 626

Answers (1)

Angus Davis
Angus Davis

Reputation: 2683

The default image used by Dataproc was recently upgraded to Spark 2.0 / Scala 2.11. This was changed in August and could potentially explain the difference.

This page details which versions of software packages are included in each Dataproc image release.

It may be sufficient to update your pom.xml with the following, recompile, and re-run your application

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.0.0</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-mllib_2.11</artifactId>
    <version>2.0.0</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>2.0.0</version>
</dependency>

The release notes for Spark 2.0 contain changes and removals between Spark 1.6 and 2.0.

As an alternative, you can still make use of the 1.0 image track using the following gcloud invocation:

$ gcloud dataproc clusters create --image-version 1.0 ...

When using an explicit image track, keep in mind that major/minor versions can be deprecated and eventually removed. The Dataproc image versioning policy can be consulted for support timelines for image versions.

Upvotes: 4

Related Questions