Reputation: 511
I just got access to spark 2.0; I have been using spark 1.6.1 up until this point. Can someone please help me set up a sparkSession using pyspark (python)? I know that the scala examples available online are similar (here), but I was hoping for a direct walkthrough in python language.
My specific case: I am loading in avro files from S3 in a zeppelin spark notebook. Then building df's and running various pyspark & sql queries off of them. All of my old queries use sqlContext. I know this is poor practice, but I started my notebook with
sqlContext = SparkSession.builder.enableHiveSupport().getOrCreate()
.
I can read in the avros with
mydata = sqlContext.read.format("com.databricks.spark.avro").load("s3:...
and build dataframes with no issues. But once I start querying the dataframes/temp tables, I keep getting the "java.lang.NullPointerException" error. I think that is indicative of a translational error (e.g. old queries worked in 1.6.1 but need to be tweaked for 2.0). The error occurs regardless of query type. So I am assuming
1.) the sqlContext alias is a bad idea
and
2.) I need to properly set up a sparkSession.
So if someone could show me how this is done, or perhaps explain the discrepancies they know of between the different versions of spark, I would greatly appreciate it. Please let me know if I need to elaborate on this question. I apologize if it is convoluted.
Upvotes: 51
Views: 159663
Reputation: 646
From here http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html
You can create a spark session using this:
>>> from pyspark.sql import SparkSession
>>> from pyspark.conf import SparkConf
>>> c = SparkConf()
>>> SparkSession.builder.config(conf=c)
Upvotes: 14
Reputation: 944
Here's a useful Python SparkSession class I developed:
#!/bin/python
# -*- coding: utf-8 -*-
######################
# SparkSession class #
######################
class SparkSession:
# - Notes:
# The main object if Spark Context ('sc' object).
# All new Spark sessions ('spark' objects) are sharing the same underlying Spark context ('sc' object) into the same JVM,
# but for each Spark context the temporary tables and registered functions are isolated.
# You can't create a new Spark Context into another JVM by using 'sc = SparkContext(conf)',
# but it's possible to create several Spark Contexts into the same JVM by specifying 'spark.driver.allowMultipleContexts' to true (not recommended).
# - See:
# https://medium.com/@achilleus/spark-session-10d0d66d1d24
# https://stackoverflow.com/questions/47723761/how-many-sparksessions-can-a-single-application-have
# https://stackoverflow.com/questions/34879414/multiple-sparkcontext-detected-in-the-same-jvm
# https://stackoverflow.com/questions/39780792/how-to-build-a-sparksession-in-spark-2-0-using-pyspark
# https://stackoverflow.com/questions/47813646/sparkcontext-getorcreate-purpose?noredirect=1&lq=1
from pyspark.sql import SparkSession
spark = None # The Spark Session
sc = None # The Spark Context
scConf = None # The Spark Context conf
def _init(self):
self.sc = self.spark.sparkContext
self.scConf = self.sc.getConf() # or self.scConf = self.spark.sparkContext._conf
# Return the current Spark Session (singleton), otherwise create a new oneÒ
def getOrCreateSparkSession(self, master=None, appName=None, config=None, enableHiveSupport=False):
cmd = "self.SparkSession.builder"
if (master != None): cmd += ".master(" + master + ")"
if (appName != None): cmd += ".appName(" + appName + ")"
if (config != None): cmd += ".config(" + config + ")"
if (enableHiveSupport == True): cmd += ".enableHiveSupport()"
cmd += ".getOrCreate()"
self.spark = eval(cmd)
self._init()
return self.spark
# Return the current Spark Context (singleton), otherwise create a new one via getOrCreateSparkSession()
def getOrCreateSparkContext(self, master=None, appName=None, config=None, enableHiveSupport=False):
self.getOrCreateSparkSession(master, appName, config, enableHiveSupport)
return self.sc
# Create a new Spark session from the current Spark session (with isolated SQL configurations).
# The new Spark session is sharing the underlying SparkContext and cached data,
# but the temporary tables and registered functions are isolated.
def createNewSparkSession(self, currentSparkSession):
self.spark = currentSparkSession.newSession()
self._init()
return self.spark
def getSparkSession(self):
return self.spark
def getSparkSessionConf(self):
return self.spark.conf
def getSparkContext(self):
return self.sc
def getSparkContextConf(self):
return self.scConf
def getSparkContextConfAll(self):
return self.scConf.getAll()
def setSparkContextConfAll(self, properties):
# Properties example: { 'spark.executor.memory' : '4g', 'spark.app.name' : 'Spark Updated Conf', 'spark.executor.cores': '4', 'spark.cores.max': '4'}
self.scConf = self.scConf.setAll(properties) # or self.scConf = self.spark.sparkContext._conf.setAll()
# Stop (clears) the active SparkSession for current thread.
#def stopSparkSession(self):
# return self.spark.clearActiveSession()
# Stop the underlying SparkContext.
def stopSparkContext(self):
self.spark.stop() # Or self.sc.stop()
# Returns the active SparkSession for the current thread, returned by the builder.
#def getActiveSparkSession(self):
# return self.spark.getActiveSession()
# Returns the default SparkSession that is returned by the builder.
#def getDefaultSession(self):
# return self.spark.getDefaultSession()
Upvotes: -2
Reputation: 39
spark = SparkSession.builder\
.master("local")\
.enableHiveSupport()\
.getOrCreate()
spark.conf.set("spark.executor.memory", '8g')
spark.conf.set('spark.executor.cores', '3')
spark.conf.set('spark.cores.max', '3')
spark.conf.set("spark.driver.memory",'8g')
sc = spark.sparkContext
Upvotes: 4
Reputation: 971
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('abc').getOrCreate()
now to import some .csv file you can use
df=spark.read.csv('filename.csv',header=True)
Upvotes: 86
Reputation: 750
As you can see in the scala example, Spark Session is part of sql module. Similar in python. hence, see pyspark sql module documentation
class pyspark.sql.SparkSession(sparkContext, jsparkSession=None) The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create DataFrame, register DataFrame as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern:
>>> spark = SparkSession.builder \
... .master("local") \
... .appName("Word Count") \
... .config("spark.some.config.option", "some-value") \
... .getOrCreate()
Upvotes: 17