Prefect
Prefect

Reputation: 153

How to remove frequency from signal

I want to remove one frequency (one peak) from signal and plot my function without it. After fft I found frequency and amplitude and I am not sure what I need to do now. For example I want to remove my highest peak (marked with red dot on plot).

import numpy as np
import matplotlib.pyplot as plt

# create data
N = 4097
T = 100.0
t = np.linspace(-T/2,T/2,N)
f = np.sin(50.0 * 2.0*np.pi*t) + 0.5*np.sin(80.0 * 2.0*np.pi*t)

#plot function
plt.plot(t,f,'r')
plt.show()

# perform FT and multiply by dt
dt = t[1]-t[0]
ft = np.fft.fft(f) * dt      
freq = np.fft.fftfreq(N, dt)
freq = freq[:N/2+1]
amplitude = np.abs(ft[:N/2+1])
# plot results
plt.plot(freq, amplitude,'o-')
plt.legend(('numpy fft * dt'), loc='upper right')
plt.xlabel('f')
plt.ylabel('amplitude')
#plt.xlim([0, 1.4])


plt.plot(freq[np.argmax(amplitude)], max(amplitude), 'ro')
print "Amplitude: " + str(max(amplitude)) + "  Frequency: " + str(freq[np.argmax(amplitude)])

plt.show()

Upvotes: 4

Views: 17470

Answers (2)

HYRY
HYRY

Reputation: 97281

You can design a bandstop filter:

from scipy import signal
wc = freq[np.argmax(amplitude)] / (0.5 / dt)
wp = [wc * 0.9, wc / 0.9]
ws = [wc * 0.95, wc / 0.95]
b, a  = signal.iirdesign(wp, ws, 1, 40)
f = signal.filtfilt(b, a, f)

Upvotes: 8

Prefect
Prefect

Reputation: 153

One option is to transform the signal to the frequency domain then remove the selected frequency.

import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import rfft, irfft, fftfreq, fft

# Number of samplepoints
N = 500
# sample spacing
T = 0.1

x = np.linspace(0.0, (N-1)*T, N)
# x = np.arange(0.0, N*T, T)  # alternate way to define x
y = 5*np.sin(x) + np.cos(2*np.pi*x) 

yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N//2)
#fft end

f_signal = rfft(y)
W = fftfreq(y.size, d=x[1]-x[0])

cut_f_signal = f_signal.copy()
cut_f_signal[(W>0.6)] = 0  # filter all frequencies above 0.6

cut_signal = irfft(cut_f_signal)

# plot results
f, axarr = plt.subplots(1, 3, figsize=(9, 3))
axarr[0].plot(x, y)
axarr[0].plot(x,5*np.sin(x),'g')

axarr[1].plot(xf, 2.0/N * np.abs(yf[:N//2]))
axarr[1].legend(('numpy fft * dt'), loc='upper right')
axarr[1].set_xlabel("f")
axarr[1].set_ylabel("amplitude")


axarr[2].plot(x,cut_signal)
axarr[2].plot(x,5*np.sin(x),'g')

plt.show()

enter image description here

enter image description here

Upvotes: 8

Related Questions