Reputation: 24850
I am having this form of data in XLS format:
+--------+---------+-------------+---------------+---------+
| ID | Branch | Customer ID | Customer Name | Balance |
+--------+---------+-------------+---------------+---------+
| 111111 | Branch1 | 1 | Company A | 10 |
+--------+---------+-------------+---------------+---------+
| 222222 | Branch2 | 2 | Company B | 20 |
+--------+---------+-------------+---------------+---------+
| 111111 | Branch1 | 2 | Company B | 30 |
+--------+---------+-------------+---------------+---------+
| 222222 | Branch2 | 3 | Company C | 10 |
+--------+---------+-------------+---------------+---------+
And I would like to use Pandas to process it. Pandas would read it as a single sheet, but I would like to use MultiIndex here, like
+--------+---------+-------------+---------------+---------+
| ID | Branch | Customer ID | Customer Name | Balance |
+--------+---------+-------------+---------------+---------+
| | | 1 | Company A | 10 |
+ 111111 + Branch1 +-------------+---------------+---------+
| | | 2 | Company B | 30 |
+--------+---------+-------------+---------------+---------+
| | | 2 | Company B | 20 |
+ 222222 + Branch2 +-------------+---------------+---------+
| | | 3 | Company C | 10 |
+--------+---------+-------------+---------------+---------+
Here 111111
and Branch1
are level 1 index and 1
Company A
are level 2 index. Is there a built-in method to do it?
Upvotes: 1
Views: 63
Reputation: 863256
If need only set_index
and sort_index
, use:
df.set_index(['ID','Branch', 'Customer ID','Customer Name'], inplace=True)
df.sort_index(inplace=True)
print (df)
Balance
ID Branch Customer ID Customer Name
111111 Branch1 1 Company A 10
2 Company B 30
222222 Branch2 2 Company B 20
3 Company C 10
But if need only two levels in MultiIndex
(a
,b
in my solution), is necessary concatenate first with second column and third with fourth column:
df['a'] = df.ID.astype(str) + '_' + df.Branch
df['b'] = df['Customer ID'].astype(str) + '_' + df['Customer Name']
#delete original columns
df.drop(['ID','Branch', 'Customer ID','Customer Name'], axis=1, inplace=True)
df.set_index(['a','b'], inplace=True)
df.sort_index(inplace=True)
print (df)
Balance
a b
111111_Branch1 1_Company A 10
2_Company B 30
222222_Branch2 2_Company B 20
3_Company C 10
If need aggregate last column by previous columns, use groupby
with GroupBy.mean
:
df = df.groupby(['ID','Branch', 'Customer ID','Customer Name'])['Balance'].mean().to_frame()
print (df)
Balance
ID Branch Customer ID Customer Name
111111 Branch1 1 Company A 10
2 Company B 30
222222 Branch2 2 Company B 20
3 Company C 10
If working with MultiIndex
in columns need tuples
for set_index
:
df.columns = pd.MultiIndex.from_arrays([['a'] * 2 + ['b']* 2 + ['c'], df.columns])
print (df)
a b c
ID Branch Customer ID Customer Name Balance
0 111111 Branch1 1 Company A 10
1 222222 Branch2 2 Company B 20
2 111111 Branch1 2 Company B 30
3 222222 Branch2 3 Company C 10
df.set_index([('a','ID'), ('a','Branch'),
('b','Customer ID'), ('b','Customer Name')], inplace=True)
df.sort_index(inplace=True)
print (df)
c
Balance
(a, ID) (a, Branch) (b, Customer ID) (b, Customer Name)
111111 Branch1 1 Company A 10
2 Company B 30
222222 Branch2 2 Company B 20
3 Company C 10
Upvotes: 1