Reputation: 13
I have 1 million records of lat long [5 digits precision] and Route. I want to cluster those data points.
I dont want to use standard k-means clustering as I am not sure how many clsuters [tried Elbow method but not convinced].
Here is my Logic -
1) I want to reduce width of lat long from 5 digits to 3 digits.
2) Now lat longs which are in range of +/- 0.001 are to be clustered in once cluster. Calculate centroid of cluster.
But in doing so I am unable to find good algorithm and R Script to execute my thought code.
Can any one please help me in above problem.
Thanks,
Upvotes: 0
Views: 528
Reputation: 15867
Clustering can be done based on connected components.
All points that are in +/-0.001 distance to each other can be connected so we will have a graph that contains subgraphs that each may be a single poin or a series of connected points(connected components) then connected components can be found and their centeroid can be calculated. Two packages required for this task :
1.deldir
to form triangulation of points and specify which points are adaject to each other and to calculate distances between them.
2 igraph
to find connected components.
library(deldir)
library(igraph)
coords <- data.frame(lat = runif(1000000),long=runif(1000000))
#round to 3 digits
coords.r <- round(coords,3)
#remove duplicates
coords.u <- unique(coords.r)
# create triangulation of points. depends on the data may take a while an consume more memory
triangulation <- deldir(coords.u$long,coords.u$lat)
#compute distance between adjacent points
distances <- abs(triangulation$delsgs$x1 - triangulation$delsgs$x2) +
abs(triangulation$delsgs$y1 - triangulation$delsgs$y2)
#remove edges that are greater than .001
edge.list <- as.matrix(triangulation$delsgs[distances < .0011,5:6])
if (length(edge.list) == 0) { #there is no edge that its lenght is less than .0011
coords.clustered <- coords.u
} else { # find connected components
#reformat list of edges so that if the list is
# 9 5
# 5 7
#so reformatted to
# 3 1
# 1 2
sorted <- sort(c(edge.list), index.return = TRUE)
run.length <- rle(sorted$x)
indices <- rep(1:length(run.length$lengths),times=run.length$lengths)
edge.list.reformatted <- edge.list
edge.list.reformatted[sorted$ix] <- indices
#create graph from list of edges
graph.struct <- graph_from_edgelist(edge.list.reformatted, directed = FALSE)
# cluster based on connected components
clust <- components(graph.struct)
#computation of centroids
coords.connected <- coords.u[run.length$values, ]
centroids <- data.frame(lat = tapply(coords.connected$lat,factor(clust$membership),mean) ,
long = tapply(coords.connected$long,factor(clust$membership),mean))
#combine clustered points with unclustered points
coords.clustered <- rbind(coords.u[-run.length$values,], centroids)
# round the data and remove possible duplicates
coords.clustered <- round(coords.clustered, 3)
coords.clustered <- unique(coords.clustered)
}
Upvotes: 1