Reputation: 1433
I would like the colour of the columns to be determined by their value on the x-axis, e.g. bars with identical values on the x-axis should have identical colours assigned to them.
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.DataFrame(index=['A','B','C','D','E','F'],data={'col1':np.array([2.3423,4.435,9.234,9.234,2.456,6.435])})
ax = sns.barplot(x='col1', y=df.index.values, data=df,palette='magma')
This is what it looks like at the moment with default settings. I presume there is a simple elegant way of doing this, but interested in any solution.
Upvotes: 3
Views: 5011
Reputation: 11301
Here a solution:
import seaborn as sns
import matplotlib as mpl, matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.DataFrame(index=['A','B','C','D','E','F'],
data={'col1':np.array([2.3423,4.435,9.234,9.234,2.456,6.435])})
ax = sns.barplot(x='col1', y=df.index.values, data=df,
palette=mpl.cm.magma(df['col1']*.1))
Note: mpl.cm.magma
is a Colormap
instance and is used to convert data values (floats) from the interval [0, 1] to colors that the Colormap
represents. If you want "auto scaling" of your data values, you could use palette=mpl.cm.ScalarMappable(cmap='magma').to_rgba(df['col1'])
instead in the sns.barplot()
call.
Upvotes: 6