Reputation: 3514
I have a Pandas DataFrame like this:
col1 col2 col3
1 0.2 0.3 0.3
2 0.2 0.3 0.3
3 0 0.4 0.4
4 0 0 0.3
5 0 0 0
6 0.1 0.4 0.4
I want to replace the col1
values with the values in the second column (col2
) only if col1
values are equal to 0, and after (for the zero values remaining), do it again but with the third column (col3
). The Desired Result is the next one:
col1 col2 col3
1 0.2 0.3 0.3
2 0.2 0.3 0.3
3 0.4 0.4 0.4
4 0.3 0 0.3
5 0 0 0
6 0.1 0.4 0.4
I did it using the pd.replace
function, but it seems too slow.. I think must be a faster way to accomplish that.
df.col1.replace(0,df.col2,inplace=True)
df.col1.replace(0,df.col3,inplace=True)
is there a faster way to do that?, using some other function instead of the pd.replace
function?
Upvotes: 41
Views: 128397
Reputation: 2310
Alternatively you can use combine
:
replace_zeros = lambda x, y: y if x == 0 else x
df['col1'].combine(df['col2'], func=replace_zeros).combine(df['col3'], func=replace_zeros)
Output:
1 0.2
2 0.2
3 0.4
4 0.3
5 0.0
6 0.1
dtype: float64
Upvotes: 0
Reputation: 30042
Generally speaking, there are three type of methods to do this conditionally replacement task. They are:
numpy.where
pandas.Series.mask
or pandas.Series.where
which is the opposite of Series.mask
pandas.DataFrame.loc
You can try pandas.Series.mask
df['col1'] = df['col1'].mask(df['col1'].eq(0), df['col2'])
df['col1'] = df['col1'].mask(df['col1'].eq(0), df['col3'])
col1 col2 col3
1 0.2 0.3 0.3
2 0.2 0.3 0.3
3 0.4 0.4 0.4
4 0.3 0.0 0.3
5 0.0 0.0 0.0
6 0.1 0.4 0.4
Or pandas.Series.where
df['col1'] = df['col1'].where(df['col1'].ne(0), df['col2'])
df['col1'] = df['col1'].where(df['col1'].ne(0), df['col3'])
At last, you can try loc
df.loc[df['col1'].eq(0), 'col1'] = df['col2']
df.loc[df['col1'].eq(0), 'col1'] = df['col3']
Upvotes: 0
Reputation: 33793
Using np.where
is faster. Using a similar pattern as you used with replace
:
df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])
However, using a nested np.where
is slightly faster:
df['col1'] = np.where(df['col1'] == 0,
np.where(df['col2'] == 0, df['col3'], df['col2']),
df['col1'])
Timings
Using the following setup to produce a larger sample DataFrame and timing functions:
df = pd.concat([df]*10**4, ignore_index=True)
def root_nested(df):
df['col1'] = np.where(df['col1'] == 0, np.where(df['col2'] == 0, df['col3'], df['col2']), df['col1'])
return df
def root_split(df):
df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])
return df
def pir2(df):
df['col1'] = df.where(df.ne(0), np.nan).bfill(axis=1).col1.fillna(0)
return df
def pir2_2(df):
slc = (df.values != 0).argmax(axis=1)
return df.values[np.arange(slc.shape[0]), slc]
def andrew(df):
df.col1[df.col1 == 0] = df.col2
df.col1[df.col1 == 0] = df.col3
return df
def pablo(df):
df['col1'] = df['col1'].replace(0,df['col2'])
df['col1'] = df['col1'].replace(0,df['col3'])
return df
I get the following timings:
%timeit root_nested(df.copy())
100 loops, best of 3: 2.25 ms per loop
%timeit root_split(df.copy())
100 loops, best of 3: 2.62 ms per loop
%timeit pir2(df.copy())
100 loops, best of 3: 6.25 ms per loop
%timeit pir2_2(df.copy())
1 loop, best of 3: 2.4 ms per loop
%timeit andrew(df.copy())
100 loops, best of 3: 8.55 ms per loop
I tried timing your method, but it's been running for multiple minutes without completing. As a comparison, timing your method on just the 6 row example DataFrame (not the much larger one tested above) took 12.8 ms.
Upvotes: 68
Reputation: 294348
approach using pd.DataFrame.where
and pd.DataFrame.bfill
df['col1'] = df.where(df.ne(0), np.nan).bfill(axis=1).col1.fillna(0)
df
Another approach using np.argmax
def pir2(df):
slc = (df.values != 0).argmax(axis=1)
return df.values[np.arange(slc.shape[0]), slc]
I know there is a better way to use numpy
to slice. I just can't think of it at the moment.
Upvotes: 4
Reputation: 1748
I'm not sure if it's faster, but you're right that you can slice the dataframe to get your desired result.
df.col1[df.col1 == 0] = df.col2
df.col1[df.col1 == 0] = df.col3
print(df)
Output:
col1 col2 col3
0 0.2 0.3 0.3
1 0.2 0.3 0.3
2 0.4 0.4 0.4
3 0.3 0.0 0.3
4 0.0 0.0 0.0
5 0.1 0.4 0.4
Alternatively if you want it to be more terse (though I don't know if it's faster) you can combine what you did with what I did.
df.col1[df.col1 == 0] = df.col2.replace(0, df.col3)
print(df)
Output:
col1 col2 col3
0 0.2 0.3 0.3
1 0.2 0.3 0.3
2 0.4 0.4 0.4
3 0.3 0.0 0.3
4 0.0 0.0 0.0
5 0.1 0.4 0.4
Upvotes: 14