Reputation: 9501
I am using this dataframe:
Fruit Date Name Number
Apples 10/6/2016 Bob 7
Apples 10/6/2016 Bob 8
Apples 10/6/2016 Mike 9
Apples 10/7/2016 Steve 10
Apples 10/7/2016 Bob 1
Oranges 10/7/2016 Bob 2
Oranges 10/6/2016 Tom 15
Oranges 10/6/2016 Mike 57
Oranges 10/6/2016 Bob 65
Oranges 10/7/2016 Tony 1
Grapes 10/7/2016 Bob 1
Grapes 10/7/2016 Tom 87
Grapes 10/7/2016 Bob 22
Grapes 10/7/2016 Bob 12
Grapes 10/7/2016 Tony 15
I would like to aggregate this by Name
and then by Fruit
to get a total number of Fruit
per Name
. For example:
Bob,Apples,16
I tried grouping by Name
and Fruit
but how do I get the total number of Fruit
?
Upvotes: 397
Views: 957472
Reputation: 29982
You could also use transform()
on column Number
after group by. This operation will calculate the total number in one group with function sum
, the result is a series with the same index as original dataframe.
df['Number'] = df.groupby(['Fruit', 'Name'])['Number'].transform('sum')
df = df.drop_duplicates(subset=['Fruit', 'Name']).drop('Date', 1)
Then, you can drop the duplicate rows on column Fruit
and Name
. Moreover, you can drop the column Date
by specifying axis 1
(0
for rows and 1
for columns).
# print(df)
Fruit Name Number
0 Apples Bob 16
2 Apples Mike 9
3 Apples Steve 10
5 Oranges Bob 67
6 Oranges Tom 15
7 Oranges Mike 57
9 Oranges Tony 1
10 Grapes Bob 35
11 Grapes Tom 87
14 Grapes Tony 15
# You could achieve the same result with functions discussed by others:
# print(df.groupby(['Fruit', 'Name'], as_index=False)['Number'].sum())
# print(df.groupby(['Fruit', 'Name'], as_index=False)['Number'].agg('sum'))
There is an official tutorial Group by: split-apply-combine talking about what you can do after group by.
Upvotes: 12
Reputation: 492
You can use reset_index() to reset the index after the sum
df.groupby(['Fruit','Name'])['Number'].sum().reset_index()
or
df.groupby(['Fruit','Name'], as_index=False)['Number'].sum()
Upvotes: 2
Reputation: 17122
Use GroupBy.sum
:
df.groupby(['Fruit','Name']).sum()
Out[31]:
Number
Fruit Name
Apples Bob 16
Mike 9
Steve 10
Grapes Bob 35
Tom 87
Tony 15
Oranges Bob 67
Mike 57
Tom 15
Tony 1
To specify the column to sum, use this: df.groupby(['Name', 'Fruit'])['Number'].sum()
Upvotes: 452
Reputation: 23011
If you want the aggregated column to have a custom name such as Total Number
, Total
etc. (all the solutions on here results in a dataframe where the aggregate column is named Number
), use named aggregation:
df.groupby(['Fruit', 'Name'], as_index=False).agg(**{'Total Number': ('Number', 'sum')})
or (if the custom name doesn't need to have a white space in it):
df.groupby(['Fruit', 'Name'], as_index=False).agg(Total=('Number', 'sum'))
this is equivalent to SQL query:
SELECT Fruit, Name, sum(Number) AS Total
FROM df
GROUP BY Fruit, Name
Speaking of SQL, there's pandasql
module that allows you to query pandas dataFrames in the local environment using SQL syntax. It's not part of Pandas, so will have to be installed separately.
#! pip install pandasql
from pandasql import sqldf
sqldf("""
SELECT Fruit, Name, sum(Number) AS Total
FROM df
GROUP BY Fruit, Name
""")
Upvotes: 3
Reputation: 269
You can use dfsql
for your problem, it will look something like:
df.sql('SELECT fruit, sum(number) GROUP BY fruit')
https://github.com/mindsdb/dfsql
here is an article about it:
Upvotes: 1
Reputation: 591
A variation on the .agg() function; provides the ability to (1) persist type DataFrame, (2) apply averages, counts, summations, etc. and (3) enables groupby on multiple columns while maintaining legibility.
df.groupby(['att1', 'att2']).agg({'att1': "count", 'att3': "sum",'att4': 'mean'})
using your values...
df.groupby(['Name', 'Fruit']).agg({'Number': "sum"})
Upvotes: 26
Reputation: 323226
You can set the groupby
column to index
then using sum
with level
df.set_index(['Fruit','Name']).sum(level=[0,1])
Out[175]:
Number
Fruit Name
Apples Bob 16
Mike 9
Steve 10
Oranges Bob 67
Tom 15
Mike 57
Tony 1
Grapes Bob 35
Tom 87
Tony 15
Upvotes: 13
Reputation: 2281
If you want to keep the original columns Fruit
and Name
, use reset_index()
. Otherwise Fruit
and Name
will become part of the index.
df.groupby(['Fruit','Name'])['Number'].sum().reset_index()
Fruit Name Number
Apples Bob 16
Apples Mike 9
Apples Steve 10
Grapes Bob 35
Grapes Tom 87
Grapes Tony 15
Oranges Bob 67
Oranges Mike 57
Oranges Tom 15
Oranges Tony 1
As seen in the other answers:
df.groupby(['Fruit','Name'])['Number'].sum()
Number
Fruit Name
Apples Bob 16
Mike 9
Steve 10
Grapes Bob 35
Tom 87
Tony 15
Oranges Bob 67
Mike 57
Tom 15
Tony 1
Upvotes: 216
Reputation: 550
df.groupby(['Fruit','Name'])['Number'].sum()
You can select different columns to sum numbers.
Upvotes: 37
Reputation: 7833
Also you can use agg function,
df.groupby(['Name', 'Fruit'])['Number'].agg('sum')
Upvotes: 265
Reputation: 7394
Both the other answers accomplish what you want.
You can use the pivot
functionality to arrange the data in a nice table
df.groupby(['Fruit','Name'],as_index = False).sum().pivot('Fruit','Name').fillna(0)
Name Bob Mike Steve Tom Tony
Fruit
Apples 16.0 9.0 10.0 0.0 0.0
Grapes 35.0 0.0 0.0 87.0 15.0
Oranges 67.0 57.0 0.0 15.0 1.0
Upvotes: 67