Reputation: 129
I am taking baby steps to use metaheuristics for solving constrained optimization problems. I am trying to solve basic Markowitz Mean-Variance optimization model (given below) using NMOF
package in R.
Min
lambda * [sum{i=1 to N}sum{j = 1 to N}w_i*w_i*Sigma_ij] - (1-lambda) * [sum{i=1 to N}(w_i*mu_i)]
subject to
sum{i=1 to N}{w_i} = 1
0 <= w_i <= 1; i = 1,...,N
where, lambda takes values between 0 and 1, N is number of assets.
Following is my code (Based on Book: Numerical Methods and Optimization in Finance):
library(NMOF)
na <- dim(fundData)[2L]
ns <- dim(fundData)[1L]
Sigma <- cov(fundData)
winf <- 0.0
wsup <- 1.0
m <- colMeans(fundData)
resample <- function(x,...) x[sample.int(length(x),...)]
data <- list(R = t(fundData),
m = m,
na = dim(fundData)[2L],
ns = dim(fundData)[1L],
Sigma = Sigma,
eps = 0.5/100,
winf = winf,
wsup = wsup,
nFP = 100)
w0 <- runif(data$na); w0 <- w0/sum(w0)
OF <- function(w,data){
wmu <- crossprod(w,m)
res <- crossprod(w, data$Sigma)
res <- tcrossprod(w,res)
result <- res - wmu
}
neighbour <- function(w, data){
toSell <- w > data$winf
toBuy <- w < data$wsup
i <- resample(which(toSell), size = 1L)
j <- resample(which(toBuy), size = 1L)
eps <- runif(1) * data$eps
eps <- min(w[i] - data$winf, data$wsup - w[j], eps)
w[i] <- w[i] - eps
w[j] <- w[j] + eps
w
}
algo <- list(x0 = w0, neighbour = neighbour, nS = 5000L)
system.time(sol1 <- LSopt(OF, algo, data))
I am not sure how to include lambda in the objective function (OF). The above code does not include lambda in OF. I tried using for
loop but it resulted in following error:
OF <- function(w,data){
lambdaSeq <- seq(.001,0.999, length = data$nFP)
for(lambda in lambdaSeq){
wmu <- crossprod(w,m)
res <- crossprod(w, data$Sigma)
res <- tcrossprod(w,res)
result <- lambda*res - (1-lambda)*wmu
}
}
Error:
Local Search.
Initial solution:
| | 0%
Error in if (xnF <= xcF) { : argument is of length zero
Timing stopped at: 0.01 0 0.03
It would be nice if someone could help me in this regard.
P.S: I am also aware that this can be solved using quadratic programming. This is just an initiation to include other constraints.
Upvotes: 1
Views: 638
Reputation: 1493
If I understand correctly, you want to replicate the mean--variance efficient frontier by Local Search? Then you need to run a Local Search for every value of lambda
that you want to include in the frontier.
The following example should help you get going. I start by attaching the package and setting up the list data
.
require("NMOF")
data <- list(m = colMeans(fundData), ## expected returns
Sigma = cov(fundData), ## expected var of returns
na = dim(fundData)[2L], ## number of assets
eps = 0.2/100, ## stepsize for LS
winf = 0, ## minimum weight
wsup = 1, ## maximum weight
lambda = 1)
Next I compute a benchmark for the minimum-variance case (i.e. lambda
equals one).
## benchmark: the QP solution
## ==> this will only work with a recent version of NMOF,
## which you can get by saying:
## install.packages('NMOF', type = 'source',
## repos = c('http://enricoschumann.net/R',
## getOption('repos')))
##
require("quadprog")
sol <- NMOF:::minvar(data$Sigma, 0, 1)
Objective function and neighbourhood function. I have slightly simplified both functions (for clarity; using crossprod
in the objective function would probably be more efficient).
OF <- function(w, data){
data$lambda * (w %*% data$Sigma %*% w) -
(1 - data$lambda) * sum(w * data$m)
}
neighbour <- function(w, data){
toSell <- which(w > data$winf)
toBuy <- which(w < data$wsup)
i <- toSell[sample.int(length(toSell), size = 1L)]
j <- toBuy[sample.int(length(toBuy), size = 1L)]
eps <- runif(1) * data$eps
eps <- min(w[i] - data$winf, data$wsup - w[j], eps)
w[i] <- w[i] - eps
w[j] <- w[j] + eps
w
}
Now we can run Local Search. Since it is a fairly large dataset (200 assets), you will need a relatively large number of steps to reproduce the QP solution.
w0 <- runif(data$na) ## a random initial solution
w0 <- w0/sum(w0)
algo <- list(x0 = w0, neighbour = neighbour, nS = 50000L)
sol1 <- LSopt(OF, algo, data)
You can compare the weights you get from Local Search with the QP solution.
par(mfrow = c(3,1), mar = c(2,4,1,1), las = 1)
barplot(sol, main = "QP solution")
barplot(sol1$xbest, main = "LS solution")
barplot(sol - sol1$xbest,
ylim = c(-0.001,0.001)) ## +/-0.1%
Finally, if you want to compute the whole frontier, you need to rerun this code for different levels of data$lambda
.
Upvotes: 2