Reputation: 11
I am new to Python and this is my first post, so I apologize for any ambiguous phrasing.
I have a table with column A that increments from 1 to 5 for several iterations. I'd like to scan column A and where this pattern doesn't match insert the correct number for A, copy column C and leave a missing value for column B.
Just inserting a row with missing values at the correct place would be helpful.
Upvotes: 1
Views: 492
Reputation: 862581
You can reindex
by MultiIndex.from_product
and then fill missing values in column C
by ffill
:
df['G'] = (df.A.diff().fillna(-1) < 1).cumsum()
df.set_index(['G','A'], inplace=True)
print (df)
B C
G A
1 1 1 Feb
2 8 Feb
4 64 Feb
5 125 Feb
2 1 0 Feb
3 6 Feb
4 16 Feb
5 31 Feb
3 1 -3 Feb
3 4 Feb
4 18 Feb
5 29 Feb
mux = pd.MultiIndex.from_product([df.index.get_level_values('G').unique(),
np.arange(1,6)], names=('G','A'))
df = df.reindex(mux)
df.C = df.C.ffill()
df = df.reset_index(level=0, drop=True).reset_index()
print (df)
A B C
0 1 1.0 Feb
1 2 8.0 Feb
2 3 NaN Feb
3 4 64.0 Feb
4 5 125.0 Feb
5 1 0.0 Feb
6 2 NaN Feb
7 3 6.0 Feb
8 4 16.0 Feb
9 5 31.0 Feb
10 1 -3.0 Feb
11 2 NaN Feb
12 3 4.0 Feb
13 4 18.0 Feb
14 5 29.0 Feb
Upvotes: 2