Reputation: 1222
I have the following two pySpark dataframe:
> df_lag_pre.columns
['date','sku','name','country','ccy_code','quantity','usd_price','usd_lag','lag_quantity']
> df_unmatched.columns
['alt_sku', 'alt_lag_quantity', 'country', 'ccy_code', 'name', 'usd_price']
Now I want to join them on common columns, so I try the following:
> df_lag_pre.join(df_unmatched, on=['name','country','ccy_code','usd_price'])
And I get the following error message:
AnalysisException: u'resolved attribute(s) price#3424 missing from country#3443,month#801,price#808,category#803,subcategory#804,page#805,date#280,link#809,name#806,quantity#807,ccy_code#3439,sku#3004,day#802 in operator !EvaluatePython PythonUDF#<lambda>(ccy_code#3439,price#3424), pythonUDF#811: string;'
Some of the columns that show up on this error, such as price, were part of another dataframe from which df_lag
was built from. I can't find any info on how to interpret this message, so any help would be greatly appreciated.
Upvotes: 21
Views: 19811
Reputation: 830
You can perform join this way in pyspark, Please see if this is useful for you:
df_lag_pre.alias("df1")
df_unmatched.alias("df2")
join_both = df1.join(df2, (col("df1.name") == col("df2.name")) & (col("df1.country") == col("df2.country")) & (col("df1.ccy_code") == col("df2.ccy_code")) & (col("df1.usd_price") == col("df2.usd_price")), 'inner')
Update: If you are getting col not defined error, please use below import
from pyspark.sql.functions import col
Upvotes: 3