Reputation: 165
I am trying to convert a typed rdd to row rdd and then creating the dataframe from it. It throws exception when I execute code.
code:
JavaRDD<Counter> rdd = sc.parallelize(counters);
JavaRDD<Row> rowRDD = rdd.map((Function<Counter, Row>) RowFactory::create);
//I am using some schema here based on the class Counter
DataFrame df = sqlContext.createDataFrame(rowRDD, getSchema());
marineDF.show(); //throws Exception
Does conversion from typed rdd to row rdd preserve the order in the row factory? If not how do I make sure of that?
Class code :
class Counter {
long vid;
byet[] bytes;
List<B> blist;
}
class B {
String id;
long count;
}
schema:
private StructType getSchema() {
List<StructField> fields = new ArrayList<>();
fields.add(DataTypes.createStructField("vid", DataTypes.LongType, false));
fields.add(DataTypes.createStructField("bytes",DataTypes.createArrayType(DataTypes.ByteType), false));
List<StructField> bFields = new ArrayList<>();
bFields.add(DataTypes.createStructField("id", DataTypes.StringType, false));
bFields.add(DataTypes.createStructField("count", DataTypes.LongType, false));
StructType bclasSchema = DataTypes.createStructType(bFields);
fields.add(DataTypes.createStructField("blist", DataTypes.createArrayType(bclasSchema, false), false));
StructType schema = DataTypes.createStructType(fields);
return schema;
}
fails with exception :
java.lang.ClassCastException: test.spark.SampleTest$A cannot be cast to java.lang.Long
at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:110)
at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow$class.getLong(rows.scala:42)
at org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getLong(rows.scala:221)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$LongConverter$.toScalaImpl(CatalystTypeConverters.scala:367)
Upvotes: 2
Views: 5802
Reputation: 330423
The thing is there is no conversion here. When you create a Row
it can accept an arbitrary Object
. It is placed as is. So it is not equivalent to a DataFrame
creation:
spark.createDataFrame(rdd, Counter.class);
or a Dataset<Counter>
creation:
Encoder<Counter> encoder = Encoders.bean(Counter.class);
spark.createDataset(rdd, encoder);
when working with bean classes.
So RowFactory::create
is just not applicable here. If you want to pass RDD<Row>
all values should be already represented in a form that can be directly used with DataFrame
with required type mapping. It means you have to explicitly map each Counter
to Row
of the following shape:
Row(vid, bytes, List(Row(id1, count1), ..., Row(idN, countN))
and your code should be equivalent to:
JavaRDD<Row> rows = counters.map((Function<Counter, Row>) cnt -> {
return RowFactory.create(
cnt.vid, cnt.bytes,
cnt.blist.stream().map(b -> RowFactory.create(b.id, b.count)).toArray()
);
});
Dataset<Row> df = sqlContext.createDataFrame(rows, getSchema());
Upvotes: 5