Reputation: 1498
Why these two expression not equivalent in this situation?
0 1 2 ,"(0)/ 0 1
0 0
0 1
1 0
1 1
2 0
2 1
0 1 2 ,"(_1)/ 0 1
|length error
| 0 1 2 ,"(_1)/0 1
Actually what I'm trying to do...
a =: 0 1 2 3 4 5 ; 0 1 2 ; 0 1
Want to get all possible combinations
,"0/&>/ a
This code doesn't work
This works though:
0 1 2 3 4 5 ,"(0 1)/ 0 1 2 ,"(0 0)/ 0 1
But, of course, I want to write in short form
,"0/&>/ a
The problem is that all terms should be
,"(0 1)/
but last
,"(0 0)/
Upvotes: 1
Views: 74
Reputation: 688
"_1
is equivalent to "0"_
In other words, "_1 forms a verb which looks at all the data to find its rank and then derives another verb to work at one rank lower than that.
Upvotes: 0
Reputation: 4302
Maybe this will help, as what it doing is simply appending at a rank of 0
0 ,"(0)/ 0 1
0 0
0 1
1 ,"(0)/ 0 1
1 0
1 1
2 ,"(0)/ 0 1
2 0
2 1
For the actual solution to the problem you are investigating, have you looked at Catalogue? {
{a
┌─────┬─────┐
│0 0 0│0 0 1│
├─────┼─────┤
│0 1 0│0 1 1│
├─────┼─────┤
│0 2 0│0 2 1│
└─────┴─────┘
┌─────┬─────┐
│1 0 0│1 0 1│
├─────┼─────┤
│1 1 0│1 1 1│
├─────┼─────┤
│1 2 0│1 2 1│
└─────┴─────┘
┌─────┬─────┐
│2 0 0│2 0 1│
├─────┼─────┤
│2 1 0│2 1 1│
├─────┼─────┤
│2 2 0│2 2 1│
└─────┴─────┘
┌─────┬─────┐
│3 0 0│3 0 1│
├─────┼─────┤
│3 1 0│3 1 1│
├─────┼─────┤
│3 2 0│3 2 1│
└─────┴─────┘
┌─────┬─────┐
│4 0 0│4 0 1│
├─────┼─────┤
│4 1 0│4 1 1│
├─────┼─────┤
│4 2 0│4 2 1│
└─────┴─────┘
┌─────┬─────┐
│5 0 0│5 0 1│
├─────┼─────┤
│5 1 0│5 1 1│
├─────┼─────┤
│5 2 0│5 2 1│
└─────┴─────┘
Catalogue matches the Append Table:
(>{a)-: 0 1 2 3 4 5 ,"(0 1)/ 0 1 2 ,"(0 0)/ 0 1
1
Upvotes: 1