Reputation: 33
I have a DataFrame
consisting of date
s, other columns and a numerical value, where some value combinations in "other columns" could be missing, and I want to populate them from previous date
s.
Example. Say the DataFrame
is like below. You can see on 2016-01-01
, we have data for (LN, A)
, (LN, B)
, (NY, A)
and (NY, B)
on columns (location, band)
.
date location band value 0 2016-01-01 LN A 10.0 1 2016-01-01 LN B 5.0 2 2016-01-01 NY A 9.0 3 2016-01-01 NY B 6.0 4 2016-01-02 LN A 11.0 5 2016-01-02 NY B 7.0 6 2016-01-03 NY A 10.0
Then you notice on 2016-01-02
, we only have (LN, A)
and (NY, B)
, but (LN, B)
and (NY, A)
are missing. Again, on 2016-01-03
, only (NY, A)
is available; all other three combinations are missing.
What I want to do is to populate the missing combinations of each date from its predecessor. Say for 2016-01-02
, I would like to add two more rows, "rolled over" from 2016-01-01
: (LN, B, 5.0)
and (NY, A, 9.0)
for columns (location, band, value)
. Same for 2016-01-03
. So as to make the whole thing like below:
date location band value 0 2016-01-01 LN A 10.0 1 2016-01-01 LN B 5.0 2 2016-01-01 NY A 9.0 3 2016-01-01 NY B 6.0 4 2016-01-02 LN A 11.0 5 2016-01-02 NY B 7.0 6 2016-01-03 NY A 10.0 7 2016-01-02 LN B 5.0 8 2016-01-02 NY A 9.0 9 2016-01-03 LN A 11.0 10 2016-01-03 LN B 5.0 11 2016-01-03 NY B 7.0
Note rows 7-11 are populated from rows 1, 2, 4, 7 and 5, respectively. The order is not really important as I can always sort afterwards if all the data I need is present.
Anyone to help? Thanks a lot!
Upvotes: 1
Views: 2519
Reputation: 3009
My solution, in summary using the product operation to get all the combinations in a multi index, then some stacking and ffill().
df =pd.DataFrame({'date': {0: '2016-01-01', 1: '2016-01-01', 2: '2016-01-01', 3: '2016-01-01', 4: '2016-01-02', 5: '2016-01-02', 6: '2016-01-03'}, 'band': {0: 'A', 1: 'B', 2: 'A', 3: 'B', 4: 'A', 5: 'B', 6: 'A'}, 'location': {0: 'LN', 1: 'LN', 2: 'NY', 3: 'NY', 4: 'LN', 5: 'NY', 6: 'NY'}, 'value': {0: 10, 1: 5, 2: 9, 3: 6, 4: 11, 5: 7, 6: 10}})
unique_dates = df['date'].unique()
df.set_index(['date','location','band'],inplace=True)
idx = pd.MultiIndex.from_product([unique_dates,['LN','NY'],['A','B']])
df = df.reindex(idx)
df = df.unstack(level=[2,1])
which produces:
value
A B A B
LN LN NY NY
2016-01-01 10.0000 5.0000 9.0000 6.0000
2016-01-02 11.0000 nan nan 7.0000
2016-01-03 nan nan 10.0000 nan
and finally:
df = df.ffill()
df = df.stack().stack()
print df
value
2016-01-01 LN A 10.0000
B 5.0000
NY A 9.0000
B 6.0000
2016-01-02 LN A 11.0000
B 5.0000
NY A 9.0000
B 7.0000
2016-01-03 LN A 11.0000
B 5.0000
NY A 10.0000
B 7.0000
Upvotes: 0
Reputation: 33843
You can use a unstack
/stack
method to get all missing values, followed by a forward fill:
# Use unstack/stack to add missing locations.
df = df.set_index(['date', 'location', 'band']) \
.unstack(level=['location', 'band']) \
.stack(level=['location', 'band'], dropna=False)
# Forward fill NaN values within ['location', 'band'] groups.
df = df.groupby(level=['location', 'band']).ffill().reset_index()
Or you can directly build a MultiIndex
containing all combinations:
# Build the full MultiIndex, set the partial MultiIndex, and reindex.
levels = ['date', 'location', 'band']
full_idx = pd.MultiIndex.from_product([df[col].unique() for col in levels], names=levels)
df = df.set_index(levels).reindex(full_idx)
# Forward fill NaN values within ['location', 'band'] groups.
df = df.groupby(level=['location', 'band']).ffill().reset_index()
The resulting output for either method:
date location band value
0 2016-01-01 LN A 10.0
1 2016-01-01 LN B 5.0
2 2016-01-01 NY A 9.0
3 2016-01-01 NY B 6.0
4 2016-01-02 LN A 11.0
5 2016-01-02 LN B 5.0
6 2016-01-02 NY A 9.0
7 2016-01-02 NY B 7.0
8 2016-01-03 LN A 11.0
9 2016-01-03 LN B 5.0
10 2016-01-03 NY A 10.0
11 2016-01-03 NY B 7.0
Upvotes: 2