Reputation: 25
I have csv file like this on imput:
time,col1,col2,col3
0,5,8,9
1,6,65,3
2,5,8,465,4
3,85,45,8
number of columns is unknown and I expect result RDD in format:
(constant,column,time,value)
that means: ((car1,col1,0,5),(car1,col2,1,8)..)
I have RDDs time, rows and header
class SimpleCSVHeader(header:Array[String]) extends Serializable {
val index = header.zipWithIndex.toMap
def apply(array:Array[String], key:String):String = array(index(key))
}
val constant = "car1"
val csv = sc.textFile("C:\\file.csv")
val data = csv.map(line => line.split(",").map(elem => elem.trim))
val header = new SimpleCSVHeader(data.take(1)(0)) // we build our header with the first line
val rows = data.filter(line => header(line,"time") != "time") // filter the header out
val time = rows.map(row => header(row,"time"))
but I'm not sure how to create result RDD from that
Upvotes: 1
Views: 265
Reputation: 5700
My suggetion is to use DataFrame rather than RDD for your scenario. But I tired to give you working solution which is subjected to volume of data.
val lines = Array("time,col1,col2,col3", "0,5,8,9", "1,6,65,3", "2,5,8,465,4")
val sc = prepareConfig()
val baseRDD = sc.parallelize(lines)
val columList = baseRDD.take(1)
//Prepare column list. this code can be avoided if you use DataFrames
val map = scala.collection.mutable.Map[Int, String]()
columList.foreach { x =>
{
var index: Int = 0
x.split(",").foreach { x =>
{
index += 1
map += (index -> x)
}
}
}
}
val mapRDD = baseRDD.flatMap { line =>
{
val splits = line.split(",")
//Replace Tuples with your case classes
Array(("car1", map(2), splits(0), splits(1)), ("car1", map(3), splits(0), splits(2)), ("car1", map(4), splits(0), splits(3)))
}
}
mapRDD.collect().foreach(f => println(f))
Result:
(car1,col1,0,5) (car1,col2,0,8) (car1,col3,0,9) (car1,col1,1,6) (car1,col2,1,65) (car1,col3,1,3) (car1,col1,2,5) (car1,col2,2,8) (car1,col3,2,465)
Upvotes: 0