Reputation: 251
Let us assume that we have 2 sorted arrays A and B of integers and a given interval [L,M] . If x is an element of A and y an element of B ,our task is to find all pairs of (x,y) that hold the following property: L<=y-x<=M. Which is the most suitable algorithm for that purpose?
So far ,I have considered the following solution: Brute force. Check the difference of all possible pairs of elements with a double loop .Complexity O(n^2).
A slightly different version of the previous solution is to make use of the fact that arrays are sorted by not checking the elements of A ,once difference gets out of interval .Complexity would still be O(n^2) but hopefully our program would run faster at an average case.
However ,I believe that O(n^2) is not optimal .Is there an algorithm with better complexity?
Upvotes: 3
Views: 149
Reputation: 4225
Here is a solution.
Have a pointer at the beginning of each array say i
for array A and j
for array B.
Calculate the difference between B[j] and A[i].
If it is less than L
, increment the pointer in array B[], i.e increment j
by 1
If it is more than M
, increment i
, i.e pointer of A.
If the difference is in between, then do the following:
search for the position of an element whose value is B[j]-A[i]-L
or the nearest
element whose value is lesser than (B[j]-A[i])-L
in array A. This
takes O(logN)
time. Say the position is p
. Increment the count of
(x,y) pairs by p-i+1
Increment only pointer j
My solution only counts the number of possible (x,y) pairs in O(NlogN)
time
For A=[1,2,3]
and B=[10,12,15]
and L=12
and M=14
, answer is 3
.
Hope this helps. I leave it up to you, to implement the solution
Edit: Enumerating all the possible (x,y) pairs would take O(N^2)
worst case time. We will be able to return the count of such pairs (x,y) in O(NlogN)
time. Sorry for not clarifying it earlier.
Edit2: I am attaching a sample implementation of my proposed method below:
def binsearch(a, x):
low = 0
high = len(a)-1
while(low<=high):
mid = (low+high)/2
if a[mid] == x:
return mid
elif a[mid]<x:
k = mid
low = low + mid
else:
high = high - mid
return k
a = [1, 2, 3]
b = [10, 12, 15, 16]
i = 0
j = 0
lenA = len(a)
lenB = len(b)
L = 12
M = 14
count = 0
result = []
while i<lenA and j<lenB:
if b[j] - a[i] < L:
j = j + 1
elif b[j] - a[i] > M:
i = i + 1
else:
p = binsearch(a,b[j]-L)
count = count + p - i + 1
j = j + 1
print "number of (x,y) pairs: ", count
Upvotes: 3
Reputation: 1178
Because it's possible for every combination to be in the specified range, the worst-case is O([A][B]), which is basically O(n^2)
However, if you want the best simple algorithm, this is what I've come up with. It starts similarly to user-targaryen's algorithm, but handles overlaps in a simplistic fashion
Create three variables: x,y,Z and s (set all to 0)
Create a boolean 'success' and set to false
Calculate Z = B[y] - A[x]
if Z < L
increment y
if Z >= L and <= M
if success is false
set s = y
set success = true
increment y
store x,y
if Z > M
set y = s //this may seem inefficient with my current example
//but you'll see the necessity if you have a sorted list with duplicate values)
//you can just change the A from my example to {1,1,2,2,3} to see what I mean
set success = false
an example: A = {1,2,3,4,5} B = {3,4,5,6,7} L = 2, M = 3
In this example, the first pair is x,y. The second number is s. The third pair is the values A[x] and B[y]. The fourth number is Z, the difference between A[x] and B[y]. The final value is X for not a match and O for a match
0,0 - 0 - 1,3 = 2 O
increment y
0,1 - 0 - 1,4 = 3 O
increment y
0,2 - 0 - 1,5 = 4 X
//this is the tricky part. Look closely at the changes this makes
set y to s
increment x
1,0 - 0 - 2,3 = 1 X
increment y
1,1 - 0 - 2,4 = 2 O
set s = y, set success = true
increment y
1,2 - 1 - 2,5 = 3 O
increment y
1,3 - 1 - 2,6 = 4 X
set y to s
increment x
2,1 - 1 - 3,4 = 1 X
increment y
2,2 - 1 - 3,5 = 2 O
set s = y, set success = true
increment y
2,3 - 2 - 3,6 = 3 O
... and so on
Upvotes: 0