Reputation: 1881
Consider the following mwe:
import pandas as pd
from decimal import *
from datetime import date
d1={'Date':date(2016,10,24),'Value':Decimal(20)}
d2={'Date':date(2016,10,25),'Value':Decimal(10)}
d3={'Date':date(2016,9,25),'Value':Decimal(50)}
d4={'Date':date(2016,9,24),'Value':Decimal(5)}
df=pd.DataFrame([d1,d2,d3,d4])
I'm able to access the month
attribute of a single date the following way:
df.Date[0].month
Out[22]: 10
However df.Date.month
does not return a vector containing all the months as I would expect. Instead it throws me an error:
AttributeError: 'Series' object has no attribute 'month'
Is there a nice way to accomplish this without having to iterate over the dataframe?
Upvotes: 1
Views: 290
Reputation: 863166
You need first convert to_datetime
and then use dt.month
:
print (pd.to_datetime(df.Date).dt.month)
0 10
1 10
2 9
3 9
Name: Date, dtype: int64
Another slowier solution with apply
:
print (df.Date.apply(lambda x: x.month))
0 10
1 10
2 9
3 9
Name: Date, dtype: int64
Timings:
#[40000 rows x 2 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
In [292]: %timeit (df.Date.apply(lambda x: x.month))
100 loops, best of 3: 15.8 ms per loop
In [293]: %timeit (pd.to_datetime(df.Date).dt.month)
100 loops, best of 3: 5.44 ms per loop
Upvotes: 4