Reputation: 49
I have a dataframe imported with fread
from a csv file (converted from .xlsx). After import, class(inputData$timestamp)
is Posixct
and attr(inputData$timestamp, "tzone")
is ""
.
As explained in this thread, I'm trying to split the dataframes by day, but they get split at 2am:
byDay <- split(inputData, as.Date(inputData$timestamp))
> byDay[[1]]
timestamp value
1 2016-09-05 00:01:00 0
2 2016-09-05 00:02:00 0
3 2016-09-05 00:03:00 0
[...]
118 2016-09-05 01:58:00 0
119 2016-09-05 01:59:00 0
>byDay[[2]]
timestamp value
120 2016-09-05 02:00:00 0
121 2016-09-05 02:01:00 0
122 2016-09-05 02:02:00 0
[...]
1558 2016-09-06 01:58:00 0
1559 2016-09-06 01:59:00 0
and so on.
I understand the date is implicitly different from what's shown on the timestamp:
> byDay[[1]]$timestamp[1]
"2016-09-05 00:01:00"
> as.Date(byDay[[1]]$timestamp[1])
"2016-09-04"
I'm not interested in timezones so I tried just setting all dates to UTC:
> attr(inputData$timestamp, "tzone") <- "UTC"
> byDay <- split(inputData, as.Date(inputData$timestamp))
> byDay[[1]]
timestamp apAvg
1 2016-09-04 22:01:00 0
2 2016-09-04 22:02:00 0
3 2016-09-04 22:03:00 0
[...]
117 2016-09-04 23:57:00 0
118 2016-09-04 23:58:00 0
119 2016-09-04 23:59:00 0
This implies the timestamps actually start at 22:00. However in the csv file, the first timestamp is 05.09.2016 00:00:00
and I can't see a sign of timezone formatting.
Is there still a possibility that the timezone problems come from the csv file?
Or do I handle the timestamps wrong in R?
How to deal with this accurately?
Upvotes: 1
Views: 2217
Reputation: 7435
I would follow @alistaire's advice in setting the time zone when parsing from string. In fact, this appears to have happened since
attr(inputData$timestamp, "tzone")
is""
afterwards and ""
is the default to set the data to your local timezone.
The issue is that in using as.Date
with a class POSIXct
input, the default for tz
is "UTC"
and not your local timezone. To get what you want:
"UTC"
as.Date(inputData$timestamp, tz="")
in your split
.To illustrate, let's say the data is:
inputData<- structure(list(timestamp = structure(c(1473048000, 1473051600,
1473055200, 1473058800, 1473062400, 1473066000, 1473069600, 1473073200,
1473076800, 1473080400, 1473084000, 1473087600, 1473091200, 1473094800,
1473098400, 1473102000, 1473105600, 1473109200, 1473112800, 1473116400,
1473120000, 1473123600, 1473127200, 1473130800, 1473134400, 1473134460,
1473134520, 1473134580), class = c("POSIXct", "POSIXt"), tzone = ""),
value = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L)), .Names = c("timestamp", "value"), row.names = c(NA,
-28L), class = "data.frame")
## timestamp value
##1 2016-09-05 00:00:00 0
##2 2016-09-05 01:00:00 0
##3 2016-09-05 02:00:00 0
##4 2016-09-05 03:00:00 0
##5 2016-09-05 04:00:00 0
##6 2016-09-05 05:00:00 0
##7 2016-09-05 06:00:00 0
##8 2016-09-05 07:00:00 0
##9 2016-09-05 08:00:00 0
##10 2016-09-05 09:00:00 0
##11 2016-09-05 10:00:00 0
##12 2016-09-05 11:00:00 0
##13 2016-09-05 12:00:00 0
##14 2016-09-05 13:00:00 0
##15 2016-09-05 14:00:00 0
##16 2016-09-05 15:00:00 0
##17 2016-09-05 16:00:00 0
##18 2016-09-05 17:00:00 0
##19 2016-09-05 18:00:00 0
##20 2016-09-05 19:00:00 0
##21 2016-09-05 20:00:00 0
##22 2016-09-05 21:00:00 0
##23 2016-09-05 22:00:00 0
##24 2016-09-05 23:00:00 0
##25 2016-09-06 00:00:00 0
##26 2016-09-06 00:01:00 0
##27 2016-09-06 00:02:00 0
##28 2016-09-06 00:03:00 0
with:
attr(inputData$timestamp, "tzone")
##[1] ""
Doing your split
using as.Date
with the default tz
parameter:
byDay <- split(inputData, as.Date(inputData$timestamp))
byDay[[1]]
## timestamp value
##1 2016-09-05 00:00:00 0
##2 2016-09-05 01:00:00 0
##3 2016-09-05 02:00:00 0
##4 2016-09-05 03:00:00 0
## ...
##17 2016-09-05 16:00:00 0
##18 2016-09-05 17:00:00 0
##19 2016-09-05 18:00:00 0
##20 2016-09-05 19:00:00 0
byDay[[2]]
## timestamp value
##21 2016-09-05 20:00:00 0
##22 2016-09-05 21:00:00 0
##23 2016-09-05 22:00:00 0
##24 2016-09-05 23:00:00 0
##25 2016-09-06 00:00:00 0
##26 2016-09-06 00:01:00 0
##27 2016-09-06 00:02:00 0
##28 2016-09-06 00:03:00 0
Now, I'm on the east coast of the United States so I'm on EDT now. This is why 22:00:00
here is split
to the next day in UTC. Do the same split
with as.Date(inputData$timestamp,tz="")
:
byDay <- split(inputData, as.Date(inputData$timestamp,tz=""))
byDay[[1]]
## timestamp value
##1 2016-09-05 00:00:00 0
##2 2016-09-05 01:00:00 0
##3 2016-09-05 02:00:00 0
##4 2016-09-05 03:00:00 0
## ...
##21 2016-09-05 20:00:00 0
##22 2016-09-05 21:00:00 0
##23 2016-09-05 22:00:00 0
##24 2016-09-05 23:00:00 0
byDay[[2]]
## timestamp value
##25 2016-09-06 00:00:00 0
##26 2016-09-06 00:01:00 0
##27 2016-09-06 00:02:00 0
##28 2016-09-06 00:03:00 0
Upvotes: 1