Reputation: 13
I'm trying to figure out how to do the following without using a loop.
I have a dataframe that has several columns including one that has a JSON string. What I'm trying to do is convert the JSON string column into their own columns within the dataframe. For example I have the following dataframe:
Column 1 | column 2 | Json Column
123 | ABC | {"anotherNumber":345,"anotherString":"DEF"}
I want to convert to this:
Column 1 | column 2 | anotherNumber | anotherString
123 | ABC | 345 | DEF
Upvotes: 1
Views: 5927
Reputation: 525
- Standard step of converting String to Json at the time of reading
import json
import pandas as pd
df = pd.DataFrame({'Column 1':[123],
'Column 2':['ABC'],
'Json_Column':['{"anotherNumber":345,"anotherString":"DEF"}']})
df
Column 1 Column 2 Json_Column
0 123 ABC {"anotherNumber":345,"anotherString":"DEF"}
df.Json_Column = df.Json_Column.apply(lambda x: json.loads(x))
df.Json_Column
0 {'anotherNumber': 345, 'anotherString': 'DEF'}
Name: Json_Column, dtype: object
- Convert every json row to a Data Frame
df.Json_Column = df.Json_Column.apply(lambda x: pd.DataFrame([x]))
df.Json_Column
0 anotherNumber anotherString
0 34...
Name: Json_Column, dtype: object
- Concatenate the Data Frame present in all the rows to a single Data Frame
import functools
temp_json_df = functools.reduce(lambda x,y: pd.concat([x,y]), df.Json_Column)
temp_json_df
anotherNumber anotherString
0 345 DEF
- Merge master and temp_json_df
df = pd.concat([df.drop(columns='Json_Column'), temp_json_df], axis=1)
df
Column 1 Column 2 anotherNumber anotherString
0 123 ABC 345 DEF
Upvotes: 0
Reputation: 862681
You can first convert Json Column
to dict
if necessary by json.loads
:
import json
df = pd.DataFrame({'Column 1':[123],
'Column 2':['ABC'],
'Json Column':['{"anotherNumber":345,"anotherString":"DEF"}']})
print (df)
Column 1 Column 2 Json Column
0 123 ABC {'anotherString': 'DEF', 'anotherNumber': 345}
print (type(df.ix[0,'Json Column']))
<class 'str'>
df['Json Column'] = df['Json Column'].apply((json.loads))
print (type(df.ix[0,'Json Column']))
<class 'dict'>
Then generate list of lists and create Dataframe
from constructor:
print (df['Json Column'].values.tolist())
[{'anotherString': 'DEF', 'anotherNumber': 345}]
df1 = pd.DataFrame(df['Json Column'].values.tolist())
print (df1)
anotherNumber anotherString
0 345 DEF
Last concat
to original, where column Json Column
was removed by drop
:
print (pd.concat([df.drop('Json Column', axis=1), df1], axis=1))
Column 1 Column 2 anotherNumber anotherString
0 123 ABC 345 DEF
Upvotes: 2