Reputation: 4112
I have two pandas dataframes defined as such:
_data_orig = [
[1, "Bob", 3.0],
[2, "Sam", 2.0],
[3, "Jane", 4.0]
]
_columns = ["ID", "Name", "GPA"]
_data_new = [
[1, "Bob", 3.2],
[3, "Jane", 3.9],
[4, "John", 1.2],
[5, "Lisa", 2.2]
]
_columns = ["ID", "Name", "GPA"]
df1 = pd.DataFrame(data=_data_orig, columns=_columns)
df2 = pd.DataFrame(data=_data_new, columns=_columns)
I need to find the following information:
For operation to find changes in rows, I figured I could look through df2 and check df1, but that seems slow, so I'm hoping to find a faster solution there.
For the other two operations, I really do not know what to do because when I try to compare the two dataframes I get:
ValueError: Can only compare identically-labeled DataFrame objects
Pandas version: '0.16.1'
Suggestions?
Upvotes: 5
Views: 4519
Reputation: 294526
setup
m = df1.merge(df2, on=['ID', 'Name'], how='outer', suffixes=['', '_'], indicator=True)
m
adds
m.loc[m._merge.eq('right_only')]
or
m.query('_merge == "right_only"')
deletes
m.loc[m._merge.eq('left_only')]
or
m.query('_merge == "left_only"')
0.16.1
answer
setup
m = df1.merge(df2, on=['ID', 'Name'], how='outer', suffixes=['', '_'])
m
adds
m.loc[m.GPA_.notnull() & m.GPA.isnull()]
deletes
m.loc[m.GPA_.isnull() & m.GPA.notnull()]
Upvotes: 6
Reputation: 17152
doing this:
df1.set_index(['Name','ID'])-df2.set_index(['Name','ID'])
Out[108]:
GPA
Name ID
Bob 1 -0.2000
Jane 3 0.1000
John 4 nan
Lisa 5 nan
Sam 2 nan
would allow you to screen if there is difference between df1 and df2. NaN would represent values that does not intersect
Upvotes: 0