Reputation: 317
I am trying to create a new column trial1['Return'] using the information from trial2. I need to get the product of the returns for specific ID within a given time range in trial1.
I have tried using groupby() with lambda as well just conditional refining. But both resulted in errors. The only way that works is the for loop. But I was wondering whether is a more efficient way of doing this.
import pandas as pd
trial1 = pd.DataFrame([[1,'2016-09-01','2016-09-05'],[1,'2016-09-03','2016-09-06'],[2,'2016-09-01','2016-09-05']] , columns=('Id','startDate','EndDate'))
trial1
trial2 = pd.DataFrame([[1,'2016-09-01',1.1],[1,'2016-09-02',1],[1,'2016-09-03',1],[1,'2016-09-04',1],[1,'2016-09-05',1],[1,'2016-09-06',1],[2,'2016-09-01',1.2],[2,'2016-09-02',1],[2,'2016-09-03',1],[2,'2016-09-04',1],[2,'2016-09-05',1]] , columns=('Id','Date','Return'))
trial2
trial1['EndDate'] = pd.to_datetime(trial1['EndDate'])
trial1['startDate'] = pd.to_datetime(trial1['startDate'])
trial2['Date'] = pd.to_datetime(trial2['Date'])
##This throws a Timestamp error
trial2_g = trial2.groupby('Id')
trial2_g.apply(lambda x: x[x['Date'].isin(pd.date_range(trial1['startDate'], trial1['EndDate']))]['Return'].prod())
##This throws a ValueError (can only compare identical-labeled series object)
trial2['Id'] = trial2['Id'].reset_index(drop=True)
trial1['Id'] = trial1['Id'].reset_index(drop=True)
trial1['Return'] = trial2[((trial2['Id']==trial1['Id']))
&(trial2['Date'].isin(pd.date_range(trial1['startDate'],trial1['EndDate'])))].prod()
##THIS WORKS AND THAT'S HOW I WANT IT TO LOOK LIKE
trial1['Return'] = 0
for nn in range(len(trial1)):
trial1['Return'].loc[nn] = trial2.Return[(trial2.Id == trial1.Id[nn])
&(trial2.Date >= trial1.startDate[nn])
&(trial2.Date <= trial1.EndDate[nn])].prod()
trial1
Upvotes: 2
Views: 1035
Reputation: 294328
I'd first set the index on trial2
t2 = trial2.set_index(['Id', 'Date'])
then use apply
on trial1
trial1['Return'] = trial1.apply(
lambda x: t2.xs(x.Id)[x.startDate:x.EndDate].prod(), 1)
trial1
Upvotes: 2