Reputation: 149
I have the following 2 dataframe:
DF1:
DATE ID_1 ID_2 RESULT
0 2014-06-16 1 a RED
1 2014-07-01 1 a WHITE
2 2014-08-16 2 c BLUE
3 2015-08-16 3 a RED
DF2
DATE ID_1 ID_2 RESULT
0 2014-06-16 1 z WHITE
1 2014-07-01 1 z WHITE
2 2014-08-16 2 h BLUE
3 2014-08-16 3 k RED
That you can obtain by running this:
df1 = pd.DataFrame(columns=["DATE","ID_1", "ID_2", "RESULT" ])
df2 = pd.DataFrame(columns=["DATE","ID_1", "ID_2","RESULT"])
df1["DATE"] = ['2014-06-16', '2014-07-01', '2014-08-16', '2015-08-16']
df1['ID_1'] = [1,1,2,3]
df1['ID_2'] = ['a', 'a', 'c', 'a']
df1['RESULT'] = ['RED', 'WHITE', 'BLUE', 'RED']
df2["DATE"] = ['2014-06-16', '2014-07-01', '2014-08-16' , '2014-08-16']
df2['ID_1'] = [1,1,2,3]
df2['ID_2'] = ['z', 'z', 'h', 'k']
df2['RESULT'] = ['WHITE', 'WHITE', 'BLUE', 'RED']
Now I need to groupby "ID_1" on both and compare if all columns (except ID_2) are equals. Ideally by showing the differences
The result should be like:
DATE ID_1 ID_2x ID2y RESULTx RESULTy
2014-06-16 1 z a WHITE RED
I tried by grouping as follow:
grp1 = df1.groupby("ID_1")
grp2 = df2.groupby("ID_1")
for (g1,g2) in zip(grp1,grp2):
g1[1][["DATE", "RESULT"]] != g2[1][["DATE", "RESULT"]]
But I think is not efficient. Moreover I get a comparison error:
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all()
Any idea about how to proceed ?
Thanks!
Upvotes: 1
Views: 578
Reputation: 11381
Re-stating the problem: what you want is to compare two dataframes and find all rows whose values differ (with the exception of a particular column). Here's one way of doing it:
cols = ['DATE', 'ID_1', 'RESULT']
cond = (df1[cols] != df2[cols]).any(axis=1)
new_df = df1[cond].merge(df2[cond], on='ID_1', how='outer', suffixes=('x','y'))
(The result differs a little from the one in your answer because I wasn't totally sure about the general behavior you're looking for - see my comments on the answer).
Upvotes: 1