Reputation: 2213
I want to cut a DataFrame to several dataframes using my own rules.
>>> data = pd.DataFrame({'distance':[1,2,3,4,5,6,7,8,9,10],'values':np.arange(0,1,0.1)})
>>> data
distance values
0 1 0.0
1 2 0.1
2 3 0.2
3 4 0.3
4 5 0.4
5 6 0.5
6 7 0.6
7 8 0.7
8 9 0.8
9 10 0.9
I'll cut data
according to values of distance
column. For example, there's some bins [1,3),[3,8),[8,10),[10,10+)
, if data's column distance
in same bin,I separate them into same group and compute column values
average value or sum value.That is
>>> data1 = data[lambda df:(df.distance >= 1) & (df.distance < 3)]
>>> data1
distance values
0 1 0.0
1 2 0.1
>>> np.mean(data1['values'])
0.05
How can I cut origin DataFrame into several groups(and then save them,process them...) efficiently?
Upvotes: 3
Views: 8347
Reputation: 3751
Pandas cut command is useful for this:
data['categories']=pd.cut(data['distance'],[-np.inf,1,3,8,10,np.inf],right=False)
data.groupby('categories').mean()
Output:
distance values
categories
[-inf, 1) NaN NaN
[1, 3) 1.5 0.05
[3, 8) 5.0 0.40
[8, 10) 8.5 0.75
[10, inf) 10.0 0.90
Upvotes: 4