Sivaram Kappaganthu
Sivaram Kappaganthu

Reputation: 53

Spark for Json Data

I am processing a nested complex Json and below is the schema for it.

root
 |-- businessEntity: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- payGroup: array (nullable = true)
 |    |    |    |-- element: struct (containsNull = true)
 |    |    |    |    |-- reportingPeriod: struct (nullable = true)
 |    |    |    |    |    |-- worker: array (nullable = true)
 |    |    |    |    |    |    |-- element: struct (containsNull = true)
 |    |    |    |    |    |    |    |-- category: string (nullable = true)
 |    |    |    |    |    |    |    |-- person: struct (nullable = true)
 |    |    |    |    |    |    |    |-- tax: array (nullable = true)
 |    |    |    |    |    |    |    |    |-- element: struct (containsNull = true)
 |    |    |    |    |    |    |    |    |    |-- code: string (nullable = true)
 |    |    |    |    |    |    |    |    |    |-- qtdAmount: double (nullable = true)
 |    |    |    |    |    |    |    |    |    |-- ytdAmount: double (nullable = 

My requirement is to create a hashmap with code concatenated with qtdAmount as key and value of qtdAmount as value. Map.put(code + "qtdAmount" , qtdAmount). How can i do this with spark.

I tried with below shell commands.

import org.apache.spark.sql._
val sqlcontext = new SQLContext(sc)
val cdm = sqlcontext.read.json("/user/edureka/CDM/cdm.json")
val spark = SparkSession.builder().appName("SQL").config("spark.some.config.option","some-vale").getOrCreate()
cdm.createOrReplaceTempView("CDM")
val sqlDF = spark.sql("SELECT businessEntity[0].payGroup[0] from CDM").show()
val address = spark.sql("SELECT businessEntity[0].payGroup[0].reportingPeriod.worker[0].person.address from CDM as address")
val worker = spark.sql("SELECT businessEntity[0].payGroup[0].reportingPeriod.worker from CDM")
val tax = spark.sql("SELECT businessEntity[0].payGroup[0].reportingPeriod.worker[0].tax from CDM")
val tax = sqlcontext.sql("SELECT businessEntity[0].payGroup[0].reportingPeriod.worker[0].tax from CDM")
tax.select("tax.code")


val codes = tax.select(expode(tax("code"))
scala> val codes = tax.withColumn("code",explode(tax("tax.code"))).withColumn("qtdAmount",explode(tax("tax.qtdAmount"))).withColumn("ytdAmount",explode(tax("tax.ytdAmount")))

i am trying to get all the codes and qtdAmount into a map. But i am not getting it. Using multiple explode statements for a single DF, is producing cartesian product of the elements.

Could someone please help on how to parse the json of this much complex in spark.

Upvotes: 3

Views: 205

Answers (1)

Shankar
Shankar

Reputation: 8957

You can get code and qtyAmount in this way.

import sqlcontext.implicits._

     cdm.select(
        $"businessEntity.element.payGroup.element.reportingPeriod.worker.element.tax.element.code".as("code"),
        $"businessEntity.element.payGroup.element.reportingPeriod.worker.element.tax.element.qtdAmount".as("qtdAmount")
      ).show

For detailed information, check this

Upvotes: 1

Related Questions