MIRMIX
MIRMIX

Reputation: 1080

Implementing Deep Learning architecture with a given dataset

I am quite new in caffe and in deep learning. I am just trying to implement deep learning architecture. Architecture

This is the architecture that i am trying to implement . The architecture and Parse27k dataset was created and constructed by Computer Vision Group at the Visual Computing Institute, RWTH Aachen University .

Below you can see my models that i need to improve :

Train_val.prototxt

name: "Parse27"
layer {
  name: "data"
  type: "HDF5Data"
  top: "crops"
  top: "labels"
  include {
    phase: TRAIN
  }

  hdf5_data_param {
    source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/train.txt"
    batch_size: 256
  }
}
layer {
  name: "data"
  type: "HDF5Data"
  top: "crops"
  top: "labels"
  include {
    phase: TEST
  }
  hdf5_data_param {
    source: "/home/nail/caffe/caffe/examples/hdf5_classification/data/test.txt"
    batch_size: 256
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "crops"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "norm2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "labels"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "labels"  
  top: "loss"
}

Solver.prototxt

net: "models/Parse27/train_val.prototxt"
test_iter: 1000
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/Parse27/Parse27_train"
solver_mode: GPU

I have 2 main hardships in implementing this architecture.

  1. As seen above, my model does not include custom-loss layer. My model is almost caffeNet architecture. But i should replace my last layer which is inside the red box with custom loss layer (green box).

  2. My train dataset has following structure.

crops       Dataset {27482, 3, 128, 192}
labels      Dataset {27482, 12}
mean        Dataset {3, 128, 192}
pids        Dataset {27482}

As seen here number of rows(examples) in crops and in labels are same 27482. However i have 12 columns in my label datasets. And my model works when there is only 1 label. How i can make it to train for all labels?

My model in the Train_val.prototxt is looking like this for now:

enter image description here

Any kind of help or suggestion will be highly appreciated.

Upvotes: 2

Views: 439

Answers (1)

Shai
Shai

Reputation: 114786

If I understand you correctly, you are trying to predict 12 discrete labels (attributes) for each input example. In that case, you should "Slice" the labels:

layer {
  type: "Slice"
  name: "slice_labels"
  bottom: "label"
  top: "attr_00"
  top: "attr_01"
  top: "attr_02"
  top: "attr_03"
  top: "attr_04"
  top: "attr_05"
  top: "attr_06"
  top: "attr_07"
  top: "attr_08"
  top: "attr_09"
  top: "attr_10"
  top: "attr_11"
  slice_param {
    axis: -1 # slice the last dimension
    slice_point: 1
    slice_point: 2
    slice_point: 3
    slice_point: 4
    slice_point: 5
    slice_point: 6
    slice_point: 7
    slice_point: 8
    slice_point: 9
    slice_point: 10
    slice_point: 11
  }
}

Now, you have a "scalar" label for each attribute. I believe you can take it from here.

Upvotes: 2

Related Questions