Reputation: 8683
So this is a problem that I have not been able to solve, and neither do I know of a good way to make a MCVE out of. Essentially, it has been briefly discussed here, but as the comments show, there was some disagreement, and the final verdict is still out. Hence I am posting a similar question again, hoping to get a better answer.
I have sensor data from a couple of thousand sensors, that I get every minute. My interest lies in forecasting the data. For this I am using the ARIMA family of forecasting models. Long story short, after discussion with the rest of my research group, we decided to use the Arima
function available in the R package forecast
, instead of the statsmodels
implementation of the same.
Since, I have data from a few thousand sensors, for which I would like to at least analyse a whole week's worth of data (to begin with), and since a week has 7 days, I have 7 times the number of sensors data with me. Essentially a some 14k sensor-day combinations. Finding the best ARIMA order (which minimizes BIC) and forecasting the next day of week data takes about 1 minute for each sensor-day combination. Which means upwards of 11 days to just process one week data on a single core!
This is obviously a waste, when I have 15 more cores just idling away the whole time. So, obviously, this is a problem for parallel processing. Note that each sensor-day combination does not influence any other sensor-day combination. Also, the rest of my code is fairly well profiled, and optimized.
The issue is that I get this weird error that I cannot catch anywhere. Here is the error reproduced:
Exception in thread Thread-3:
Traceback (most recent call last):
File "/home/kartik/miniconda3/lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File "/home/kartik/miniconda3/lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "/home/kartik/miniconda3/lib/python3.5/multiprocessing/pool.py", line 429, in _handle_results
task = get()
File "/home/kartik/miniconda3/lib/python3.5/multiprocessing/connection.py", line 251, in recv
return ForkingPickler.loads(buf.getbuffer())
File "/home/kartik/miniconda3/lib/python3.5/site-packages/rpy2/robjects/robject.py", line 55, in _reduce_robjectmixin
rinterface_level=rinterface_factory(rdumps, rtypeof)
ValueError: Mismatch between the serialized object and the expected R type (expected 6 but got 24)
Here are a few characteristics of this error that I have discovered:
rpy2
packagerpy2
is being used in only one place in my code where it might have to recode returned values into Python types. Protecting that line in try: ... except: ...
does not catch that exceptionI have tried everything from extreme procedural coding, with functions to deal with the least cases (that is only one function to be called in parallel), to extreme encapsulation, where the executable block in the if __name__ == '__main__':
calls a function which reads in the data, does the necessary grouping, then passes the groups to another function, which imports multiprocessing
and calls another function in parallel, which imports the processing module that imports rpy2
, and passes the data to the Arima
function in R.
Basically, it doesn't matter if rpy2
is called and initialized deep inside function nests, such that it has no idea another instance might be initialized, or if it is called and initialized once, globally, the error is raised if multiprocessing
is involved.
Here is an attempt to present at least some basic pseudo code such that the error might be reproduced.
import numpy as np
import pandas as pd
def arima_select(y, order):
from rpy2 import robjects as ro
from rpy2.robjects.packages import importr
from rpy2.robjects import pandas2ri
pandas2ri.activate()
forecast = importr('forecast')
res = forecast.Arima(y, order=ro.FloatVector(order))
return res
def arima_wrapper(data):
data = data[['tstamp', 'val']]
data.set_index('tstamp', inplace=True)
return arima_select(data, (1,1,1))
def applyParallel(groups, func):
from multiprocessing import Pool, cpu_count
with Pool(cpu_count()) as p:
ret_list = p.map(func, [group for _, group in groups])
return pd.concat(ret_list, keys=[name for name, _ in groups])
def wrapper():
df = pd.read_csv('file.csv', parse_dates=[1], infer_datetime_format=True)
df['day'] = df['tstamp'].dt.day
res = applyParallel(df.groupby(['sensor', 'day']), arima_wrapper)
print(res)
Obviously, the above code can be encapsulated further, but I think it should reproduce the error quite accurately.
Here is the output of print(data.head(6))
when placed immediately below data.set_index('tstamp', inplace=True)
in arima_wrapper
from the pseudo code above:
Or alternatively, data for a sensor, for a whole week can be generated simply with:
def data_gen(start_day):
r = pd.Series(pd.date_range('2016-09-{}'.format(str(start_day)),
periods=24*60, freq='T'),
name='tstamp')
d = pd.Series(np.random.randint(10, 80, 1440), name='val')
s = pd.Series(['sensor1']*1440, name='sensor')
return pd.concat([s, r, d], axis=1)
df = pd.concat([data_gen(day) for day in range(1,8)], ignore_index=True)
The first observation is that this error is only raised when multiprocessing
is involved, not when the function (arima_wrapper
) is called in a loop. Therefore, it must be associated somehow with multiprocessing issues. R is not very multiprocess friendly, but when written in the way shown in the pseudo code, each instance of R should not know about the existence of the other instances.
The way the pseudo code is structured, there must be an initialization of rpy2
for each call inside the multiple subprocesses spawned by multiprocessing
. If that were true, each instance of rpy2
should have spawned its own instance of R, which should just execute one function, and terminate. That would not raise any errors, because it would be similar to the single threaded operation. Is my understanding here accurate, or am I completely or partially missing the point?
Were all instances of rpy2
to somehow share an instance of R, then I might reasonably expect the error. What is true: is R shared among all instances of rpy2
, or is there an instance of R for each instance of rpy2
?
How might this issue be overcome?
Since SO hates question threads with multiple questions in them, I will prioritize my questions such that partial answers will be accepted. Here is my priority list:
rpy2
or is there an instance of R for each instance of rpy2
? Answers to this question will be accepted only if they lead to a resolution of the problem.Upvotes: 2
Views: 1489
Reputation: 8683
The following changes to the arima_select
function in the pesudo code presented in the question work:
import numpy as np
import pandas as pd
from rpy2 import rinterface as ri
ri.initr()
def arima_select(y, order):
def rimport(packname):
as_environment = ri.baseenv['as.environment']
require = ri.baseenv['require']
require(ri.StrSexpVector([packname]),
quiet = ri.BoolSexpVector((True, )))
packname = ri.StrSexpVector(['package:' + str(packname)])
pack_env = as_environment(packname)
return pack_env
frcst = rimport("forecast")
args = (('y', ri.FloatSexpVector(y)),
('order', ri.FloatSexpVector(order)),
('include.constant', ri.StrSexpVector(const)))
return frcst['Arima'].rcall(args, ri.globalenv)
Keeping the rest of the pseudo code the same. Note that I have since optimized the code further, and it does not require all the functions presented in the question. Basically, the following is necessary and sufficient:
import numpy as np
import pandas as pd
from rpy2 import rinterface as ri
ri.initr()
def arima(y, order=(1,1,1)):
# This is the same as arima_select above, just renamed to arima
...
def applyParallel(groups, func):
from multiprocessing import Pool, cpu_count
with Pool(cpu_count(), worker_init) as p:
ret_list = p.map(func, [group for _, group in groups])
return pd.concat(ret_list, keys=[name for name, _ in groups])
def main():
# Create your df in your favorite way:
def data_gen(start_day):
r = pd.Series(pd.date_range('2016-09-{}'.format(str(start_day)),
periods=24*60, freq='T'),
name='tstamp')
d = pd.Series(np.random.randint(10, 80, 1440), name='val')
s = pd.Series(['sensor1']*1440, name='sensor')
return pd.concat([s, r, d], axis=1)
df = pd.concat([data_gen(day) for day in range(1,8)], ignore_index=True)
applyParallel(df.groupby(['sensor', pd.Grouper(key='tstamp', freq='D')]),
arima) # Note one may use partial from functools to pass order to arima
Note that I also do not call arima
directly from applyParallel
since my goal is to find the best model for the given series (for a sensor and day). I use a function arima_wrapper
to iterate through the order combinations, and call arima
at each iteration.
Upvotes: 1
Reputation: 11545
(...) Long story short (...)
Really ?
- How might this issue be overcome? A working code example that does not raise the issue will be accepted as answer even if it does not answer any other question, provided no other answer does better, or was posted earlier.
Answers may leave a quite bit of work on your end...
- Is my understanding of Python imports accurate, or am I missing the point about multiple instances of R? If I am wrong, how should I edit the import statements such that a new instance is created within each subprocess? Answers to this question are likely to point me towards a probable solution, and will be accepted, provided no answer does better, or was posted earlier
Python packages/modules are "uniquely" imported across your process which means that all code using the package/module within the process is using the same single import (you don't have a copy per import
in a given block).
Because of this, I'd recommend to use an initialization function when creating your Pool rather than repeatedly import rpy2 and setup the conversion each time a task is sent to a worker. You may also gain in performance if each task is short.
def arima_select(y, order):
# FIXME: check whether the rpy2.robjects package
# should be (re) imported as ro to be visible
res = forecast.Arima(y, order=ro.FloatVector(order))
return res
forecast = None
def worker_init():
from rpy2 import robjects as ro
from rpy2.robjects.packages import importr
from rpy2.robjects import pandas2ri
pandas2ri.activate()
global forecast
forecast = importr('forecast')
def applyParallel(groups, func):
from multiprocessing import Pool, cpu_count
with Pool(cpu_count(), worker_init) as p:
ret_list = p.map(func, [group for _, group in groups])
return pd.concat(ret_list, keys=[name for name, _ in groups])
- Is R shared among all instances of rpy2 or is there an instance of R for each instance of rpy2? Answers to this question will be accepted only if they lead to a resolution of the problem.
rpy2 is making R available by linking its C shared library. One such library per Python process, and that's as a stateful library (R not able to handle concurrency). I think that your issue has more to do with object serialization (see http://rpy2.readthedocs.io/en/version_2.8.x/robjects_serialization.html#object-serialization) than with concurrency.
What is happening is some apparent confusion when reconstructing the R objects after Python pickled the rpy2 object. More specifically, when looking that the R object types mentioned in the error message:
>>> from rpy2.rinterface import str_typeint
>>> str_typeint(6)
'LANGSXP'
>>> str_typeint(24)
'RAWSXP'
I am guessing that the R object returned by forecast.Arima
contains an unevaluated R expression (for example the call that lead to that result object) and when serializing and unserializing it is coming back as something different (a raw vector of bytes). This is possibly a bug with R's own serialization mechanism (since rpy2 is using it behind the hood). For now, and solve your issue, you may want to extract what forecast.Arima
what you care most about and only return that from the function call ran by the worker.
Upvotes: 4