Reputation: 385
I am trying to select some values from a pyspark dataframe, based on some rules. getting an exception in pyspark.
from pyspark.sql import functions as F
df.select(df.card_key,F.when((df.tran_sponsor = 'GAMES') & (df.location_code = '9145'),'ENTERTAINMENT').when((df.tran_sponsor = 'XYZ') & (df.location_code = '123'),'eBOOKS').when((df.tran_sponsor = 'XYZ') & (df.l_code.isin(['123', '234', '345', '456', '567', '678', '789', '7878', '67', '456']) ),'FINANCE').otherwise(df.tran_sponsor)).show()
The following exception i am encountering. Can you give some suggestion?
File "", line 1 df.select(df.card_key,F.when((df.tran_sponsor = 'GAMES') & (df.location_code = '9145'),'ENTERTAINMENT').when((df.tran_sponsor = 'XYZ') & (df.location_code = '123'),'eBOOKS').when((df.tran_sponsor = 'XYZ') & (df.l_code.isin(['6001', '6002', '6003', '6004', '6005', '6006', '6007', '6008', '6009', '6010', '6011', '6012', '6013', '6014'])),'FINANCE').otherwise(df.tran_sponsor)).show() ^ SyntaxError: invalid syntax
Upvotes: 1
Views: 2014
Reputation: 385
Well i just figured out, there is not problem with isin thing the problem was with assignment operator :(
df.select(df.card_key,F.when((df.tran_sponsor == 'GAMES') & (df.location_code == '9145'),'ENTERTAINMENT').when((df.tran_sponsor == 'XYZ') & (df.location_code == '123'),'eBOOKS').when((df.tran_sponsor == 'XYZ') & (df.l_code.isin(['123', '234', '345', '456', '567', '678', '789', '7878', '67', '456']) ),'FINANCE').otherwise(df.tran_sponsor)).show()
It works well, thanks for efforts if someone was looking into it.
Upvotes: 2