Reputation: 3807
I have the following DataFrame
A
0 2012-01-13 10:00:06
1 2012-01-13 11:09:04
2 2012-01-13 12:07:05
3 2012-01-13 13:03:04
4 2012-01-16 10:00:10
5 2012-01-16 11:09:04
6 2012-01-16 12:01:05
7 2012-01-16 13:09:04
8 2012-01-17 10:01:04
9 2012-01-17 11:05:06
10 2012-01-17 12:01:05
11 2012-01-17 13:04:04
where the index is 0,1,..etc
Is there a way to transpose data based on the day? for example the new DataFrame should look like:
A B C D
0 2012-01-13 10:00 2012-01-13 11:09 2012-01-13 12:07 2012-01-13 13:03
1 2012-01-16 10:00 2012-01-16 11:09 2012-01-16 12:01 2012-01-16 13:09
2 2012-01-17 10:01 2012-01-17 11:05 2012-01-17 12:01 2012-01-17 13:04
Upvotes: 4
Views: 240
Reputation: 863741
I think you need create column of days by dt.day
, then create groups by cumcount
, use pivot
with reset_index
. Last assign new column names:
#if dtype of column is not datetime
df.A = pd.to_datetime(df.A)
df['day'] = df.A.dt.day
df['groups'] = df.groupby('day').cumcount()
df = df.pivot(index='day', columns='groups', values='A').reset_index(drop=True)
df.columns = list('ABCD')
print (df)
A B C \
0 2012-01-13 10:00:06 2012-01-13 11:09:04 2012-01-13 12:07:05
1 2012-01-16 10:00:10 2012-01-16 11:09:04 2012-01-16 12:01:05
2 2012-01-17 10:01:04 2012-01-17 11:05:06 2012-01-17 12:01:05
D
0 2012-01-13 13:03:04
1 2012-01-16 13:09:04
2 2012-01-17 13:04:04
Upvotes: 5