Reputation: 141
I have a Pandas DataFrame with a column of time strings in hours and minutes (e.g. 1 hour 8 mins). Some cells are only minutes (e.g. 47 mins). I'm trying to convert from this format to just the integer value of the total number of minutes (e.g. 1 hour 8 mins would be 68).
I tried hard coding it but am having trouble with this as I am relatively new to Python. Is there a library that would be able to help me with this?
In [10]: df_times = pd.DataFrame(times)
df_times.columns = ["times"]
df_times
Out[10]: times
0 31 mins
1 1 hour 28 mins
2 1 hour 1 min
3 1 min
... ...
22849 ERROR
22850 7 mins
In [11]: (pd.to_timedelta(df_times["times"].str.replace('mins','min')).dt.total_seconds()//60).astype(int)
ValueError: unit abbreviation w/o a number
And when I use errors="coerce":
In [12]: (pd.to_timedelta(df_times["times"].str.replace('mins','min'), errors="coerce").dt.total_seconds()//60).astype(int)
ValueError: Cannot convert NA to integer
Upvotes: 2
Views: 5427
Reputation: 210842
you can use pandas.to_timedelta() and Series.dt.total_seconds() methods:
In [244]: df
Out[244]:
time
0 1 hour 8 mins
1 47 mins
2 10 hours 12 minutes
3 1 min
In [245]: (pd.to_timedelta(df.time.str.replace('mins', 'min'))
...: .dt.total_seconds()//60).astype(int)
...:
Out[245]:
0 68
1 47
2 612
3 1
Name: time, dtype: int32
Upvotes: 4