Reputation: 61
Thank you for reading my question.
I am new to python and became interested in scipy. I am trying to figure out how I can make the image of the Racoon (in scipy misc) to a binary one (black, white). This is not taught in the scipy-lecture tutorial.
This is so far my code:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import misc #here is how you get the racoon image
face = misc.face()
image = misc.face(gray=True)
plt.imshow(image, cmap=plt.cm.gray)
print image.shape
def binary_racoon(image, lowerthreshold, upperthreshold):
img = image.copy()
shape = np.shape(img)
for i in range(shape[1]):
for j in range(shape[0]):
if img[i,j] < lowerthreshold and img[i,j] > upperthreshold:
#then assign black to the pixel
else:
#then assign white to the pixel
return img
convertedpicture = binary_racoon(image, 80, 100)
plt.imshow(convertedpicture, cmap=plt.cm.gist_gray)
I have seen other people using OpenCV to make a picture binary, but I am wondering how I can do it in this way by looping over the pixels? I have no idea what value to give to the upper and lower threshold, so I made a guess of 80 and 100. Is there also a way to determine this?
Upvotes: 6
Views: 30288
Reputation: 27611
In case anyone else is looking for a quick minimal example to experiment with, here's what I used to binarize an image:
from scipy.misc import imread, imsave
# read in image as 8 bit grayscale
img = imread('cat.jpg', mode='L')
# specify a threshold 0-255
threshold = 150
# make all pixels < threshold black
binarized = 1.0 * (img > threshold)
# save the binarized image
imsave('binarized.jpg', binarized)
Input:
Output:
Upvotes: 4
Reputation: 36746
You don't need to iterate over the x and y positions of the image array. Use the numpy array to check if the array is above of below the threshold of interest. Here is some code that produces a boolean (true/false) array as the black and white image.
# use 4 different thresholds
thresholds = [50,100,150,200]
# create a 2x2 image array
fig, ax_arr = plt.subplots(2,2)
# iterate over the thresholds and image axes
for ax, th in zip(ax_arr.ravel(), thresholds):
# bw is the black and white array with the same size and shape
# as the original array. the color map will interpret the 0.0 to 1.0
# float array as being either black or white.
bw = 1.0*(image > th)
ax.imshow(bw, cmap=plt.cm.gray)
ax.axis('off')
# remove some of the extra white space
fig.tight_layout(h_pad=-1.5, w_pad=-6.5)
Upvotes: 1
Reputation: 97661
You're overthinking this:
def to_binary(img, lower, upper):
return (lower < img) & (img < upper)
In numpy
, the comparison operators apply over the whole array elementwise. Note that you have to use &
instead of and
to combine the booleans, since python does not allow numpy
to overload and
Upvotes: 3