neversaint
neversaint

Reputation: 64014

Difference in calculating mean AUC using Scikit-Learn

I have the following code:

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold, cross_val_score
import numpy as np
from scipy import interp

seed = 7
np.random.seed(seed)

iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

cv = StratifiedKFold(n_splits=10)
classifier = svm.SVC(kernel='linear', probability=True, random_state=seed)

mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)

i= 0
for train, test in cv.split(X, y):
    probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
    # Compute ROC curve and area the curve
    fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
    mean_tpr += interp(mean_fpr, fpr, tpr)
    mean_tpr[0] = 0.0
    roc_auc = auc(fpr, tpr)

    i += 1


mean_tpr /= cv.get_n_splits(X, y)
mean_tpr[-1] = 1.0
mean_auc_1 = auc(mean_fpr, mean_tpr)
print "#--- Method 1 to calculate mean AUC ---"
print mean_auc_1


print "#--- Method 2 to calculate mean AUC ---"
results = cross_val_score(classifier, X, y, cv=cv)
mean_auc_2 =  "{:.3f}".format(results.mean())
print mean_auc_2

It produces the following result:

#--- Method 1 to calculate mean AUC ---
0.801818181818
#--- Method 2 to calculate mean AUC ---
0.700

Method 1 of calculating mean AUC is through loop as suggested by this Scikit Tutorial. Method 2 calculates the mean AUC using Scikit's inbuilt cross_val_score() method.

My question is, why the difference? Which mean AUC should I believe? How should I modify Method 2 so that the result is the same with Method 1?

I'm using this version of Scikit-Learn:

In [442]: sklearn.__version__
Out[442]: '0.18'

Upvotes: 1

Views: 837

Answers (1)

Quickbeam2k1
Quickbeam2k1

Reputation: 5437

There is no auc calculation for your second example. You should add a custom scoring function. See the api for cross_val_score.

You are just calculating the average accuracy. This is typically the standard scoring function used for a classifier. You can check the standard score function for the svm in the documentation

Something like this

cross_val_score(classifier, X, y, cv=cv, scoring='roc_auc')

should work

Upvotes: 2

Related Questions