Reputation: 465
I would like to know what's really happening calling & and * in C.
Is that it costs a lot of resources? Should I call &
each time I wanna get an adress of a same given variable or keep it in memory i.e in a cache variable. Same for * i.e when I wanna get a pointer value ?
Example
void bar(char *str)
{
check_one(*str)
check_two(*str)
//... Could be replaced by
char c = *str;
check_one(c);
check_two(c);
}
Upvotes: 1
Views: 118
Reputation: 338
AFAIK, in x86 and x64 your variables are stored in memory (if not stated with register
keyword) and accessed by pointers.
const int foo = 5
equal to foo dd 5
and check_one(*foo)
equal to push dword [foo]; call check_one
.
If you create additional variable c
, then it looks like:
c resd 1
...
mov eax, [foo]
mov dword [c], eax ; Variable foo just copied to c
push dword [c]
call check_one
And nothing changed, except additional copying and memory allocation. I think that compiler's optimizer deals with it and makes both cases as fast as it is possible. So you can use more readable variant.
Upvotes: 0
Reputation: 43148
tldr;
If you are programming in C, then the &
operator is used to obtain the address of a variable and *
is used to get the value of that variable, given it's address.
This is also the reason why in C, when you pass a string to a function, you must state the length of the string otherwise, if someone unfamiliar with your logic sees the function signature, they could not tell if the function is called as bar(&some_char)
or bar(some_cstr)
.
To conclude, if you have a variable x
of type someType
, then &x
will result in someType* addressOfX
and *addressOfX
will result in giving the value of x
. Functions in C only take pointers as parameters, i.e. you cannot create a function where the parameter type is &x
or &&x
Also your examples can be rewritten as:
check_one(str[0])
check_two(str[0])
Upvotes: 0
Reputation: 36352
I would like to know what's really happening calling & and * in C.
There's no such thing as "calling" &
or *
. They are the address operator, or the dereference operator, and instruct the compiler to work with the address of an object, or with the object that a pointer points to, respectively.
And C is not C++, so there's no references; I think you just misused that word in your question's title.
In most cases, that's basically two ways to look at the same thing.
Usually, you'll use &
when you actually want the address of an object. Since the compiler needs to handle objects in memory with their address anyway, there's no overhead.
For the specific implications of using the operators, you'll have to look at the assembler your compiler generates.
Example: consider this trivial code, disassembled via godbolt.org:
#include <stdio.h>
#include <stdlib.h>
void check_one(char c)
{
if(c == 'x')
exit(0);
}
void check_two(char c)
{
if(c == 'X')
exit(1);
}
void foo(char *str)
{
check_one(*str);
check_two(*str);
}
void bar(char *str)
{
char c = *str;
check_one(c);
check_two(c);
}
int main()
{
char msg[] = "something";
foo(msg);
bar(msg);
}
The compiler output can far wildly depending on the vendor and optimization settings.
clang 3.8 using -O2
check_one(char): # @check_one(char)
movzx eax, dil
cmp eax, 120
je .LBB0_2
ret
.LBB0_2:
push rax
xor edi, edi
call exit
check_two(char): # @check_two(char)
movzx eax, dil
cmp eax, 88
je .LBB1_2
ret
.LBB1_2:
push rax
mov edi, 1
call exit
foo(char*): # @foo(char*)
push rax
movzx eax, byte ptr [rdi]
cmp eax, 88
je .LBB2_3
movzx eax, al
cmp eax, 120
je .LBB2_2
pop rax
ret
.LBB2_3:
mov edi, 1
call exit
.LBB2_2:
xor edi, edi
call exit
bar(char*): # @bar(char*)
push rax
movzx eax, byte ptr [rdi]
cmp eax, 88
je .LBB3_3
movzx eax, al
cmp eax, 120
je .LBB3_2
pop rax
ret
.LBB3_3:
mov edi, 1
call exit
.LBB3_2:
xor edi, edi
call exit
main: # @main
xor eax, eax
ret
Notice that foo
and bar
are identical. Do other compilers do something similar? Well...
gcc x64 5.4 using -O2
check_one(char):
cmp dil, 120
je .L6
rep ret
.L6:
push rax
xor edi, edi
call exit
check_two(char):
cmp dil, 88
je .L11
rep ret
.L11:
push rax
mov edi, 1
call exit
bar(char*):
sub rsp, 8
movzx eax, BYTE PTR [rdi]
cmp al, 120
je .L16
cmp al, 88
je .L17
add rsp, 8
ret
.L16:
xor edi, edi
call exit
.L17:
mov edi, 1
call exit
foo(char*):
jmp bar(char*)
main:
sub rsp, 24
movabs rax, 7956005065853857651
mov QWORD PTR [rsp], rax
mov rdi, rsp
mov eax, 103
mov WORD PTR [rsp+8], ax
call bar(char*)
mov rdi, rsp
call bar(char*)
xor eax, eax
add rsp, 24
ret
Well, if there were any doubt foo
and bar
are equivalent, a least by the compiler, I think this:
foo(char*):
jmp bar(char*)
is a strong argument they indeed are.
Upvotes: 4
Reputation: 123488
In C, there's no runtime cost associated with either the unary &
or *
operators; both are evaluated at compile time. So there's no difference in runtime between
check_one(*str)
check_two(*str)
and
char c = *str;
check_one( c );
check_two( c );
ignoring the overhead of the assignment.
That's not necessarily true in C++, since you can overload those operators.
Upvotes: 2