Reputation: 9971
Good Overviews
Generally speaking, you're making a decision between fast read times (for example, nested set) or fast write times (adjacency list). Usually, you end up with a combination of the options below that best fit your needs. The following provides some in-depth reading:
Options
Ones I am aware of and general features:
O(n/2)
moves, inserts, deletes due to volatile encodingO(log n)
(size of the subtree) for insert, updates, deletesLEFT(lineage, #) = '/enumerated/path'
)O(log n)
(size of the subtree) for insert, updates, deletesDatabase Specific Notes
MySQL/MariaDB
Oracle
PostgreSQL
SQL Server
Upvotes: 1618
Views: 346565
Reputation: 9279
MySQL now supports the JSON data type:
https://dev.mysql.com/doc/refman/8.0/en/json.html
Upvotes: 2
Reputation: 18593
I went for it because I could insert new items to the tree easily (you just need a branch's id to insert a new item to it) and also query it quite fast.
+-------------+----------------------+--------+-----+-----+
| category_id | name | parent | lft | rgt |
+-------------+----------------------+--------+-----+-----+
| 1 | ELECTRONICS | NULL | 1 | 20 |
| 2 | TELEVISIONS | 1 | 2 | 9 |
| 3 | TUBE | 2 | 3 | 4 |
| 4 | LCD | 2 | 5 | 6 |
| 5 | PLASMA | 2 | 7 | 8 |
| 6 | PORTABLE ELECTRONICS | 1 | 10 | 19 |
| 7 | MP3 PLAYERS | 6 | 11 | 14 |
| 8 | FLASH | 7 | 12 | 13 |
| 9 | CD PLAYERS | 6 | 15 | 16 |
| 10 | 2 WAY RADIOS | 6 | 17 | 18 |
+-------------+----------------------+--------+-----+-----+
parent
column.lft
between lft
and rgt
of parent.lft
lower than the node's lft
and rgt
bigger than the node's rgt
and sort the by parent
.I needed to make accessing and querying the tree faster than inserts, that's why I chose this
The only problem is to fix the left
and right
columns when inserting new items. well I created a stored procedure for it and called it every time I inserted a new item which was rare in my case but it is really fast.
I got the idea from the Joe Celko's book, and the stored procedure and how I came up with it is explained here in DBA SE
https://dba.stackexchange.com/q/89051/41481
Although this solution allows for rapid searches to locate descendants, it is not ideal for handling large datasets that require frequent inserts or deletes due to its slow performance in these operations. Therefore, it is best suited for tables that won't chnage frequently.
Upvotes: 45
Reputation: 490
If your database supports arrays, you can also implement a lineage column or materialized path as an array of parent ids.
Specifically with Postgres you can then use the set operators to query the hierarchy, and get excellent performance with GIN indices. This makes finding parents, children, and depth pretty trivial in a single query. Updates are pretty manageable as well.
I have a full write up of using arrays for materialized paths if you're curious.
Upvotes: 17
Reputation: 59555
This design was not mentioned yet:
Though it has limitations, if you can bear them, it's very simple and very efficient. Features:
Here follows an example - taxonomic tree of birds so the hierarchy is Class/Order/Family/Genus/Species - species is the lowest level, 1 row = 1 taxon (which corresponds to species in the case of the leaf nodes):
CREATE TABLE `taxons` (
`TaxonId` smallint(6) NOT NULL default '0',
`ClassId` smallint(6) default NULL,
`OrderId` smallint(6) default NULL,
`FamilyId` smallint(6) default NULL,
`GenusId` smallint(6) default NULL,
`Name` varchar(150) NOT NULL default ''
);
and the example of the data:
+---------+---------+---------+----------+---------+-------------------------------+
| TaxonId | ClassId | OrderId | FamilyId | GenusId | Name |
+---------+---------+---------+----------+---------+-------------------------------+
| 254 | 0 | 0 | 0 | 0 | Aves |
| 255 | 254 | 0 | 0 | 0 | Gaviiformes |
| 256 | 254 | 255 | 0 | 0 | Gaviidae |
| 257 | 254 | 255 | 256 | 0 | Gavia |
| 258 | 254 | 255 | 256 | 257 | Gavia stellata |
| 259 | 254 | 255 | 256 | 257 | Gavia arctica |
| 260 | 254 | 255 | 256 | 257 | Gavia immer |
| 261 | 254 | 255 | 256 | 257 | Gavia adamsii |
| 262 | 254 | 0 | 0 | 0 | Podicipediformes |
| 263 | 254 | 262 | 0 | 0 | Podicipedidae |
| 264 | 254 | 262 | 263 | 0 | Tachybaptus |
This is great because this way you accomplish all the needed operations in a very easy way, as long as the internal categories don't change their level in the tree.
Upvotes: 42
Reputation: 15335
This is a very partial answer to your question, but I hope still useful.
Microsoft SQL Server 2008 implements two features that are extremely useful for managing hierarchical data:
Have a look at "Model Your Data Hierarchies With SQL Server 2008" by Kent Tegels on MSDN for starts. See also my own question: Recursive same-table query in SQL Server 2008
Upvotes: 35
Reputation: 14269
I am using PostgreSQL with closure tables for my hierarchies. I have one universal stored procedure for the whole database:
CREATE FUNCTION nomen_tree() RETURNS trigger
LANGUAGE plpgsql
AS $_$
DECLARE
old_parent INTEGER;
new_parent INTEGER;
id_nom INTEGER;
txt_name TEXT;
BEGIN
-- TG_ARGV[0] = name of table with entities with PARENT-CHILD relationships (TBL_ORIG)
-- TG_ARGV[1] = name of helper table with ANCESTOR, CHILD, DEPTH information (TBL_TREE)
-- TG_ARGV[2] = name of the field in TBL_ORIG which is used for the PARENT-CHILD relationship (FLD_PARENT)
IF TG_OP = 'INSERT' THEN
EXECUTE 'INSERT INTO ' || TG_ARGV[1] || ' (child_id,ancestor_id,depth)
SELECT $1.id,$1.id,0 UNION ALL
SELECT $1.id,ancestor_id,depth+1 FROM ' || TG_ARGV[1] || ' WHERE child_id=$1.' || TG_ARGV[2] USING NEW;
ELSE
-- EXECUTE does not support conditional statements inside
EXECUTE 'SELECT $1.' || TG_ARGV[2] || ',$2.' || TG_ARGV[2] INTO old_parent,new_parent USING OLD,NEW;
IF COALESCE(old_parent,0) <> COALESCE(new_parent,0) THEN
EXECUTE '
-- prevent cycles in the tree
UPDATE ' || TG_ARGV[0] || ' SET ' || TG_ARGV[2] || ' = $1.' || TG_ARGV[2]
|| ' WHERE id=$2.' || TG_ARGV[2] || ' AND EXISTS(SELECT 1 FROM '
|| TG_ARGV[1] || ' WHERE child_id=$2.' || TG_ARGV[2] || ' AND ancestor_id=$2.id);
-- first remove edges between all old parents of node and its descendants
DELETE FROM ' || TG_ARGV[1] || ' WHERE child_id IN
(SELECT child_id FROM ' || TG_ARGV[1] || ' WHERE ancestor_id = $1.id)
AND ancestor_id IN
(SELECT ancestor_id FROM ' || TG_ARGV[1] || ' WHERE child_id = $1.id AND ancestor_id <> $1.id);
-- then add edges for all new parents ...
INSERT INTO ' || TG_ARGV[1] || ' (child_id,ancestor_id,depth)
SELECT child_id,ancestor_id,d_c+d_a FROM
(SELECT child_id,depth AS d_c FROM ' || TG_ARGV[1] || ' WHERE ancestor_id=$2.id) AS child
CROSS JOIN
(SELECT ancestor_id,depth+1 AS d_a FROM ' || TG_ARGV[1] || ' WHERE child_id=$2.'
|| TG_ARGV[2] || ') AS parent;' USING OLD, NEW;
END IF;
END IF;
RETURN NULL;
END;
$_$;
Then for each table where I have a hierarchy, I create a trigger
CREATE TRIGGER nomenclature_tree_tr AFTER INSERT OR UPDATE ON nomenclature FOR EACH ROW EXECUTE PROCEDURE nomen_tree('my_db.nomenclature', 'my_db.nom_helper', 'parent_id');
For populating a closure table from existing hierarchy I use this stored procedure:
CREATE FUNCTION rebuild_tree(tbl_base text, tbl_closure text, fld_parent text) RETURNS void
LANGUAGE plpgsql
AS $$
BEGIN
EXECUTE 'TRUNCATE ' || tbl_closure || ';
INSERT INTO ' || tbl_closure || ' (child_id,ancestor_id,depth)
WITH RECURSIVE tree AS
(
SELECT id AS child_id,id AS ancestor_id,0 AS depth FROM ' || tbl_base || '
UNION ALL
SELECT t.id,ancestor_id,depth+1 FROM ' || tbl_base || ' AS t
JOIN tree ON child_id = ' || fld_parent || '
)
SELECT * FROM tree;';
END;
$$;
Closure tables are defined with 3 columns - ANCESTOR_ID, DESCENDANT_ID, DEPTH. It is possible (and I even advice) to store records with same value for ANCESTOR and DESCENDANT, and a value of zero for DEPTH. This will simplify the queries for retrieval of the hierarchy. And they are very simple indeed:
-- get all descendants
SELECT tbl_orig.*,depth FROM tbl_closure LEFT JOIN tbl_orig ON descendant_id = tbl_orig.id WHERE ancestor_id = XXX AND depth <> 0;
-- get only direct descendants
SELECT tbl_orig.* FROM tbl_closure LEFT JOIN tbl_orig ON descendant_id = tbl_orig.id WHERE ancestor_id = XXX AND depth = 1;
-- get all ancestors
SELECT tbl_orig.* FROM tbl_closure LEFT JOIN tbl_orig ON ancestor_id = tbl_orig.id WHERE descendant_id = XXX AND depth <> 0;
-- find the deepest level of children
SELECT MAX(depth) FROM tbl_closure WHERE ancestor_id = XXX;
Upvotes: 10
Reputation: 739
This is really a square peg, round hole question.
If relational databases and SQL are the only hammer you have or are willing to use, then the answers that have been posted thus far are adequate. However, why not use a tool designed to handle hierarchical data? Graph database are ideal for complex hierarchical data.
The inefficiencies of the relational model along with the complexities of any code/query solution to map a graph/hierarchical model onto a relational model is just not worth the effort when compared to the ease with which a graph database solution can solve the same problem.
Consider a Bill of Materials as a common hierarchical data structure.
class Component extends Vertex {
long assetId;
long partNumber;
long material;
long amount;
};
class PartOf extends Edge {
};
class AdjacentTo extends Edge {
};
Shortest path between two sub-assemblies: Simple graph traversal algorithm. Acceptable paths can be qualified based on criteria.
Similarity: What is the degree of similarity between two assemblies? Perform a traversal on both sub-trees computing the intersection and union of the two sub-trees. The percent similar is the intersection divided by the union.
Transitive Closure: Walk the sub-tree and sum up the field(s) of interest, e.g. "How much aluminum is in a sub-assembly?"
Yes, you can solve the problem with SQL and a relational database. However, there are much better approaches if you are willing to use the right tool for the job.
Upvotes: 12
Reputation: 3503
My favorite answer is as what the first sentence in this thread suggested. Use an Adjacency List to maintain the hierarchy and use Nested Sets to query the hierarchy.
The problem up until now has been that the coversion method from an Adjacecy List to Nested Sets has been frightfully slow because most people use the extreme RBAR method known as a "Push Stack" to do the conversion and has been considered to be way to expensive to reach the Nirvana of the simplicity of maintenance by the Adjacency List and the awesome performance of Nested Sets. As a result, most people end up having to settle for one or the other especially if there are more than, say, a lousy 100,000 nodes or so. Using the push stack method can take a whole day to do the conversion on what MLM'ers would consider to be a small million node hierarchy.
I thought I'd give Celko a bit of competition by coming up with a method to convert an Adjacency List to Nested sets at speeds that just seem impossible. Here's the performance of the push stack method on my i5 laptop.
Duration for 1,000 Nodes = 00:00:00:870
Duration for 10,000 Nodes = 00:01:01:783 (70 times slower instead of just 10)
Duration for 100,000 Nodes = 00:49:59:730 (3,446 times slower instead of just 100)
Duration for 1,000,000 Nodes = 'Didn't even try this'
And here's the duration for the new method (with the push stack method in parenthesis).
Duration for 1,000 Nodes = 00:00:00:053 (compared to 00:00:00:870)
Duration for 10,000 Nodes = 00:00:00:323 (compared to 00:01:01:783)
Duration for 100,000 Nodes = 00:00:03:867 (compared to 00:49:59:730)
Duration for 1,000,000 Nodes = 00:00:54:283 (compared to something like 2 days!!!)
Yes, that's correct. 1 million nodes converted in less than a minute and 100,000 nodes in under 4 seconds.
You can read about the new method and get a copy of the code at the following URL. http://www.sqlservercentral.com/articles/Hierarchy/94040/
I also developed a "pre-aggregated" hierarchy using similar methods. MLM'ers and people making bills of materials will be particularly interested in this article. http://www.sqlservercentral.com/articles/T-SQL/94570/
If you do stop by to take a look at either article, jump into the "Join the discussion" link and let me know what you think.
Upvotes: 109