user4179448
user4179448

Reputation:

Cosinus of an array in Python

I want to obtain results of cosine for each value.

import numpy as np

import math

t = np.arange(0, 20.5, 0.5)

print(math.cos(t))

I get 'TypeError: only length-1 arrays can be converted to Python scalars' error.

Upvotes: 1

Views: 401

Answers (3)

Sebastian Wozny
Sebastian Wozny

Reputation: 17506

You want to apply the operation to every element of the array rather than to the entire array.

Solution with math

>>> import numpy as np
>>> import math
>>> t = np.arange(0, 20.5, 0.5)
>>> print([math.cos(element) for element in t])

[1.0, 0.8775825618903728, 0.5403023058681398, 0.0707372016677029, -0.4161468365471424, -0.8011436155469337, -0.9899924966004454, -0.9364566872907963, -0.6536436208636119, -0.2107957994307797, 0.28366218546322625, 0.70866977429126, 0.960170286650366, 0.9765876257280235, 0.7539022543433046, 0.3466353178350258, -0.14550003380861354, -0.6020119026848236, -0.9111302618846769, -0.9971721561963784, -0.8390715290764524, -0.4755369279959925, 0.004425697988050785, 0.4833047587530059, 0.8438539587324921, 0.9977982791785807, 0.9074467814501962, 0.594920663309892, 0.1367372182078336, -0.354924266788705, -0.7596879128588213, -0.9784534628188842, -0.9576594803233847, -0.7023970575027135, -0.27516333805159693, 0.2194399632114593, 0.6603167082440802, 0.939524893748256, 0.9887046181866692, 0.7958149698139441, 0.40808206181339196]

Solution with numpy

However the better solution is to use np.cos which also accepts an array:

>>> np.cos(t)
array([ 1.        ,  0.87758256,  0.54030231,  0.0707372 , -0.41614684,
       -0.80114362, -0.9899925 , -0.93645669, -0.65364362, -0.2107958 ,
        0.28366219,  0.70866977,  0.96017029,  0.97658763,  0.75390225,
        0.34663532, -0.14550003, -0.6020119 , -0.91113026, -0.99717216,
       -0.83907153, -0.47553693,  0.0044257 ,  0.48330476,  0.84385396,
        0.99779828,  0.90744678,  0.59492066,  0.13673722, -0.35492427,
       -0.75968791, -0.97845346, -0.95765948, -0.70239706, -0.27516334,
        0.21943996,  0.66031671,  0.93952489,  0.98870462,  0.79581497,
        0.40808206])

Speed comparison

The second solution has huge benefits in terms of speed:

In [9]: %timeit [math.cos(element) for element in t]
The slowest run took 5.19 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 7.54 µs per loop

In [10]: %timeit np.cos(t)
The slowest run took 21.73 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 1.1 µs per loop

Upvotes: 3

MMF
MMF

Reputation: 5921

You can either use np.cos :

t = np.arange(0, 20.5, 0.5)
print np.cos(t) # which accepts np.arrays

Or you can use math.cos :

t = np.arange(0, 20.5, 0.5)
print([math.cos(element) for element in t])

Upvotes: 0

Julien Marrec
Julien Marrec

Reputation: 11905

You can either use something that allows arrays (faster!), or use a list comprehension.

  • np.cos(t): 1000000 loops, best of 3: 1.81 µs per loop
  • [math.cos(x) for x in t]: 100000 loops, best of 3: 11.2 µs per loop

Upvotes: 0

Related Questions