Reputation: 8450
I have a numpy array with 1
s & 0
s (or bools if that's easier)
I would like to find the distance from each 1
its closest 'edge' (an edge is where a 1
meets a 0
).
Toy example:
Original array:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1]])
Result:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 2, 1],
[0, 1, 1, 1]])
If possible, I'd like to use the 'cityblock' distance, but that's lower priority
Thanks!
Upvotes: 1
Views: 1065
Reputation: 221524
Here's a vectorized approach using binary_erosion
& cdist(..'cityblock')
-
from scipy.ndimage.morphology import binary_erosion
from scipy.spatial.distance import cdist
def dist_from_edge(img):
I = binary_erosion(img) # Interior mask
C = img - I # Contour mask
out = C.astype(int) # Setup o/p and assign cityblock distances
out[I] = cdist(np.argwhere(C), np.argwhere(I), 'cityblock').min(0) + 1
return out
Sample run -
In [188]: img.astype(int)
Out[188]:
array([[0, 0, 0, 0, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 0, 0, 0]])
In [189]: dist_from_edge(img)
Out[189]:
array([[0, 0, 0, 0, 1, 0, 0],
[0, 1, 1, 1, 2, 1, 0],
[0, 1, 2, 2, 3, 2, 1],
[0, 1, 2, 3, 2, 2, 1],
[0, 0, 1, 2, 1, 1, 1],
[0, 0, 0, 1, 0, 0, 0]])
Here's an input, output on a human blob -
Upvotes: 4
Reputation: 114791
Here's one way you can do this with scipy.ndimage.distance_transform_cdt
(or scipy.ndimage.distance_transform_bf
):
import numpy as np
from scipy.ndimage import distance_transform_cdt
def distance_from_edge(x):
x = np.pad(x, 1, mode='constant')
dist = distance_transform_cdt(x, metric='taxicab')
return dist[1:-1, 1:-1]
For example:
In [327]: a
Out[327]:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1]])
In [328]: distance_from_edge(a)
Out[328]:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 2, 1],
[0, 1, 1, 1]], dtype=int32)
In [329]: x
Out[329]:
array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]])
In [330]: distance_from_edge(x)
Out[330]:
array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 1, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 0, 1, 0, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]], dtype=int32)
If you don't pad the array with zeros, you get the distance to the nearest 0 in the array:
In [335]: distance_transform_cdt(a, metric='taxicab')
Out[335]:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 2, 2],
[0, 1, 2, 3]], dtype=int32)
In [336]: distance_transform_cdt(x, metric='taxicab')
Out[336]:
array([[6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0],
[5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 0, 0],
[4, 4, 4, 3, 2, 1, 0, 0, 1, 2, 1, 0],
[3, 3, 4, 3, 2, 1, 0, 0, 0, 1, 0, 0],
[2, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2]], dtype=int32)
Here a different method that uses scipy.ndimage.binary_erosion
. I wrote this before I discovered the distance transform function. I'm sure there are much more efficient methods, but this should work reasonably well for images that are not too big.
import numpy as np
from scipy.ndimage import binary_erosion
def distance_from_edge(x):
dist = np.zeros_like(x, dtype=int)
while np.count_nonzero(x) > 0:
dist += x # Assumes x is an array of 0s and 1s, or bools.
x = binary_erosion(x)
return dist
For example,
In [291]: a
Out[291]:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1]])
In [292]: distance_from_edge(a)
Out[292]:
array([[0, 0, 0, 0],
[0, 1, 1, 1],
[0, 1, 2, 1],
[0, 1, 1, 1]])
In [293]: x
Out[293]:
array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]])
In [294]: distance_from_edge(x)
Out[294]:
array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 1, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 0, 1, 0, 0],
[1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 2, 2, 2, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]])
Upvotes: 4