Reputation: 745
I have dozens of csv files with similar (but not always exactly the same) headers. For instance, one has:
Year Month Day Hour Minute Direct Diffuse D_Global D_IR Zenith Test_Site
One has:
Year Month Day Hour Minute Direct Diffuse2 D_Global D_IR U_Global U_IR Zenith Test_Site
(Notice one lacks "U_Global" and "U_IR", the other has "Diffuse2" instead of "Diffuse")
I know how to pass multiple csv's into my script, but how do I have the csv's only pass values to columns in which they currently have values? And perhaps pass "Nan" to all other columns in that row.
Ideally I'd have something like:
'Year','Month','Day','Hour','Minute','Direct','Diffuse','Diffuse2','D_Global','D_IR','U_Global','U_IR','Zenith','Test_Site'
1992,1,1,0,3,-999.00,-999.00,"Nan",-999.00,-999.00,"Nan","Nan",122.517,"BER"
2013,5,30,15,55,812.84,270.62,"Nan",1078.06,-999.00,"Nan","Nan",11.542,"BER"
2004,9,1,0,1,1.04,79.40,"Nan",78.67,303.58,61.06,310.95,85.142,"ALT"
2014,12,1,0,1,0.00,0.00,"Nan",-999.00,226.95,0.00,230.16,115.410,"ALT"
The other caveat, is that this dataframe needs to be appended to. It needs to remain as multiple csv files are passed into it. I think I'll probably have it write out to it's own csv at the end (it's eventually going to NETCDF4).
Upvotes: 4
Views: 4277
Reputation: 210852
Assuming you have the following CSV files:
test1.csv:
year,month,day,Direct
1992,1,1,11
2013,5,30,11
2004,9,1,11
test2.csv:
year,month,day,Direct,Direct2
1992,1,1,21,201
2013,5,30,21,202
2004,9,1,21,203
test3.csv:
year,month,day,File3
1992,1,1,text1
2013,5,30,text2
2004,9,1,text3
2016,1,1,unmatching_date
Solution:
import glob
import pandas as pd
files = glob.glob(r'd:/temp/test*.csv')
def get_merged(files, **kwargs):
df = pd.read_csv(files[0], **kwargs)
for f in files[1:]:
df = df.merge(pd.read_csv(f, **kwargs), how='outer')
return df
print(get_merged(files))
Output:
year month day Direct Direct Direct2 File3
0 1992 1 1 11.0 21.0 201.0 text1
1 2013 5 30 11.0 21.0 202.0 text2
2 2004 9 1 11.0 21.0 203.0 text3
3 2016 1 1 NaN NaN NaN unmatching_date
UPDATE: usual idiomatic pd.concat(list_of_dfs)
solution wouldn't work here, because it's joining by indexes:
In [192]: pd.concat([pd.read_csv(f) for f in glob.glob(file_mask)], axis=0, ignore_index=True)
Out[192]:
Direct Direct Direct2 File3 day month year
0 NaN 11.0 NaN NaN 1 1 1992
1 NaN 11.0 NaN NaN 30 5 2013
2 NaN 11.0 NaN NaN 1 9 2004
3 21.0 NaN 201.0 NaN 1 1 1992
4 21.0 NaN 202.0 NaN 30 5 2013
5 21.0 NaN 203.0 NaN 1 9 2004
6 NaN NaN NaN text1 1 1 1992
7 NaN NaN NaN text2 30 5 2013
8 NaN NaN NaN text3 1 9 2004
9 NaN NaN NaN unmatching_date 1 1 2016
In [193]: pd.concat([pd.read_csv(f) for f in glob.glob(file_mask)], axis=1, ignore_index=True)
Out[193]:
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1992.0 1.0 1.0 11.0 1992.0 1.0 1.0 21.0 201.0 1992 1 1 text1
1 2013.0 5.0 30.0 11.0 2013.0 5.0 30.0 21.0 202.0 2013 5 30 text2
2 2004.0 9.0 1.0 11.0 2004.0 9.0 1.0 21.0 203.0 2004 9 1 text3
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016 1 1 unmatching_date
or using index_col=None
explicitly:
In [194]: pd.concat([pd.read_csv(f, index_col=None) for f in glob.glob(file_mask)], axis=0, ignore_index=True)
Out[194]:
Direct Direct Direct2 File3 day month year
0 NaN 11.0 NaN NaN 1 1 1992
1 NaN 11.0 NaN NaN 30 5 2013
2 NaN 11.0 NaN NaN 1 9 2004
3 21.0 NaN 201.0 NaN 1 1 1992
4 21.0 NaN 202.0 NaN 30 5 2013
5 21.0 NaN 203.0 NaN 1 9 2004
6 NaN NaN NaN text1 1 1 1992
7 NaN NaN NaN text2 30 5 2013
8 NaN NaN NaN text3 1 9 2004
9 NaN NaN NaN unmatching_date 1 1 2016
In [195]: pd.concat([pd.read_csv(f, index_col=None) for f in glob.glob(file_mask)], axis=1, ignore_index=True)
Out[195]:
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1992.0 1.0 1.0 11.0 1992.0 1.0 1.0 21.0 201.0 1992 1 1 text1
1 2013.0 5.0 30.0 11.0 2013.0 5.0 30.0 21.0 202.0 2013 5 30 text2
2 2004.0 9.0 1.0 11.0 2004.0 9.0 1.0 21.0 203.0 2004 9 1 text3
3 NaN NaN NaN NaN NaN NaN NaN NaN NaN 2016 1 1 unmatching_date
The following more idiomatic solution works, but it changes original order of columns and rows / data:
In [224]: dfs = [pd.read_csv(f, index_col=None) for f in glob.glob(r'd:/temp/test*.csv')]
...:
...: common_cols = list(set.intersection(*[set(x.columns.tolist()) for x in dfs]))
...:
...: pd.concat((df.set_index(common_cols) for df in dfs), axis=1).reset_index()
...:
Out[224]:
month day year Direct Direct Direct2 File3
0 1 1 1992 11.0 21.0 201.0 text1
1 1 1 2016 NaN NaN NaN unmatching_date
2 5 30 2013 11.0 21.0 202.0 text2
3 9 1 2004 11.0 21.0 203.0 text3
Upvotes: 6
Reputation: 7058
Can't pandas take care of this automagically?
http://pandas.pydata.org/pandas-docs/stable/merging.html#concatenating-using-append
If your indices overlap, don't forget to add 'ignore_index=True'
Upvotes: 4
Reputation: 11943
First, run through all the files to define the common headers :
csv_path = './csv_files'
csv_separator = ','
full_headers = []
for fn in os.listdir(csv_path):
with open(fn, 'r') as f:
headers = f.readline().split(csv_separator)
full_headers += full_headers + list(set(full_headers) - set(headers))
Then write your header line into your output file, and run again through all the files to fill it.
You can use : csv.DictReader(open('myfile.csv'))
to be able to match the headers to their designated column simply.
Upvotes: 1