Reputation: 718
I have to find the best solution for >10^7 equation systems with 5 equations in 2 variables each (5 measurements to find 2 parameters with the least amount of error in a long series). The following code (normally used to do curve fitting) does what I want:
#Create_example_Data
n = 100
T_Arm = np.arange(10*n).reshape(-1, 5, 2)
Erg = np.arange(5*n).reshape(-1, 5)
m = np.zeros(n)
c = np.zeros(n)
#Run
for counter in xrange(n):
m[counter], c[counter] = np.linalg.lstsq(T_Arm[counter, :, :],
Erg[counter, :])[0]
Unfortunately it is too slow. Is there any way how to speed this code up significantly? I tried to vectorise it, but I did not succeed. Using the last solution as a initial guess might be a good idea as well. Using scipy.optimize.leastsq
did not speed it up as well.
Upvotes: 3
Views: 936
Reputation: 13218
You could use a sparse block matrix A which stores the (5, 2) entries of T_Arm on its diagonal, and solve AX = b where b is the vector composed of stacked entries of Erg
. Then solve the system with scipy.sparse.linalg.lsqr(A, b).
To construct A and b I use n=3 for visualisation purposes:
import numpy as np
import scipy
from scipy.sparse import bsr_matrix
n = 3
col = np.hstack(5 * [np.arange(10 * n / 5).reshape(n, 2)]).flatten()
array([ 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 2., 3., 2.,
3., 2., 3., 2., 3., 2., 3., 4., 5., 4., 5., 4., 5.,
4., 5., 4., 5.])
row = np.tile(np.arange(10 * n / 2), (2, 1)).T.flatten()
array([ 0., 0., 1., 1., 2., 2., 3., 3., 4., 4., 5.,
5., 6., 6., 7., 7., 8., 8., 9., 9., 10., 10.,
11., 11., 12., 12., 13., 13., 14., 14.])
A = bsr_matrix((T_Arm[:n].flatten(), (row, col)), shape=(5 * n, 2 * n))
A.toarray()
array([[ 0, 1, 0, 0, 0, 0],
[ 2, 3, 0, 0, 0, 0],
[ 4, 5, 0, 0, 0, 0],
[ 6, 7, 0, 0, 0, 0],
[ 8, 9, 0, 0, 0, 0],
[ 0, 0, 10, 11, 0, 0],
[ 0, 0, 12, 13, 0, 0],
[ 0, 0, 14, 15, 0, 0],
[ 0, 0, 16, 17, 0, 0],
[ 0, 0, 18, 19, 0, 0],
[ 0, 0, 0, 0, 20, 21],
[ 0, 0, 0, 0, 22, 23],
[ 0, 0, 0, 0, 24, 25],
[ 0, 0, 0, 0, 26, 27],
[ 0, 0, 0, 0, 28, 29]], dtype=int64)
b = Erg[:n].flatten()
And then
scipy.sparse.linalg.lsqr(A, b)[0]
array([ 5.00000000e-01, -1.39548109e-14, 5.00000000e-01,
8.71088538e-16, 5.00000000e-01, 2.35398726e-15])
EDIT: A is not as huge in memory as it seems: more on block sparse matrices here.
Upvotes: 4