Reputation: 20580
I am relatively new to spark graphx. Basically my graph has:
I want to given all the person vertices in the graph, traverse the edges to collect a list of cars for each person
e.g.
person1 -> [car1, car2]
person2 -> [car3]
Upvotes: 1
Views: 1093
Reputation: 3587
You can achieve this with a bit of SQL.
Let's assume that you have the following graph:
import org.apache.spark.graphx
import org.apache.spark.rdd.RDD
// Create an RDD for the vertices
val v: RDD[(VertexId, (String))] =
sc.parallelize(Array((1L, ("car1")), (2L, ("car2")),
(3L, ("car3")), (4L, ("person1")),(5L, ("person2"))))
// Create an RDD for edges
val e: RDD[Edge[Int]] =
sc.parallelize(Array(Edge(4L, 1L,1), Edge(4L, 2L, 1),
Edge(5L, 1L,1)))
val graph = Graph(v,e)
Now extract the edges and vertices into Dataframes:
val vDf = graph.vertices.toDF("vId","vName")
val eDf =graph.edges.toDF("person","car","attr")
Transform the data into the desired output
eDf.drop("attr").join(vDf,'person === 'vId).drop("vId","person").withColumnRenamed("vName","person")
.join(vDf,'car === 'vId).drop("car","vId")
.groupBy("person")
.agg(collect_set('vName)).toDF("person","car")
.show()
+-------+------------+
| person| car|
+-------+------------+
|person2| [car1]|
|person1|[car2, car1]|
+-------+------------+
Upvotes: 1