Reputation: 3637
Say that there are two sorted lists: A and B.
The number of entries in A and B can vary. (They can be very small/huge. They can be similar to each other/significantly different).
What is the known to be the fastest algorithm for this functionality?
Can any one give me an idea or reference?
Upvotes: 9
Views: 4345
Reputation: 2118
Here is a simple and tested Python implementation that uses bisect search to advance pointers of both lists.
It assumes both input lists are sorted and contain no duplicates.
import bisect
def compute_intersection_list(l1, l2):
# A is the smaller list
A, B = (l1, l2) if len(l1) < len(l2) else (l2, l1)
i = 0
j = 0
intersection_list = []
while i < len(A) and j < len(B):
if A[i] == B[j]:
intersection_list.append(A[i])
i += 1
j += 1
elif A[i] < B[j]:
i = bisect.bisect_left(A, B[j], lo=i+1)
else:
j = bisect.bisect_left(B, A[i], lo=j+1)
return intersection_list
# test on many random cases
import random
MM = 100 # max value
for _ in range(10000):
M1 = random.randint(0, MM) # random max value
N1 = random.randint(0, M1) # random number of values
M2 = random.randint(0, MM) # random max value
N2 = random.randint(0, M2) # random number of values
a = sorted(random.sample(range(M1), N1)) # sampling without replacement to have no duplicates
b = sorted(random.sample(range(M2), N2))
assert compute_intersection_list(a, b) == sorted(set(a).intersection(b))
Upvotes: 2
Reputation: 65506
Assume that A
has m
elements and B
has n
elements, with m ≥ n
. Information theoretically, the best we can do is
(m + n)!
lg -------- = n lg (m/n) + O(n)
m! n!
comparisons, since in order to verify an empty intersection, we essentially have to perform a sorted merge. We can get within a constant factor of this bound by iterating through B
and keeping a "cursor" in A
indicating the position at which the most recent element of B
should be inserted to maintain sorted order. We use exponential search to advance the cursor, for a total cost that is on the order of
lg x_1 + lg x_2 + ... + lg x_n,
where x_1 + x_2 + ... + x_n = m + n
is some integer partition of m
. This sum is O(n lg (m/n))
by the concavity of lg
.
Upvotes: 6
Reputation: 8301
I don't know if this is the fastest option but here's one that runs in O(n+m)
where n
and m
are the sizes of your lists:
Upvotes: 3